Skip to main content

Advertisement

Log in

Population genetic structure at the northern range limit of the threatened eastern hog-nosed snake (Heterodon platirhinos)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat loss and fragmentation have important consequences for population persistence by reducing dispersal, connectivity, and population size. Characterizing patterns of population genetic structure and gene flow, and testing for the genetic signature of population declines and inbreeding can provide key insights into conservation for at-risk species. We use 12 microsatellite DNA markers to quantify the spatial structuring across two regional populations of the threatened eastern hog-nosed snake (Heterodon platirhinos) in Ontario, Canada. We further test for inbreeding and recent, rapid population declines, for the latter using both a ‘heterozygosity excess’ approach and Approximate Bayesian computation. Spatial Bayesian assignment tests revealed four distinct genetic clusters that were not apparent from species occurrence data, suggesting that the current designation of a single management unit for this species is invalid. We found some evidence for inbreeding in all studied locales. However, heterozygosity excess tests provided only weak evidence for recent bottlenecks and varied according to mutational model specified. In contrast, ABC provided strong support for a recent and rapid reduction in population size within one sample locale (Wasaga Beach), where individuals are largely confined to a small area circumscribed by expanding urban areas. For three other locales investigated, we found equal support for either recent rapid or gradual population declines. Immediate action is required for Wasaga Beach if this population is to persist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 62:2025–2035

    Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bertorelle G, Benazzo A, Mona S (2010) ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol Ecol 19:2609–2625

  • Besag J, York J, Mollié A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43:1–20

    Article  Google Scholar 

  • Bijlsma R, Bundgaard J, Boerema AC (2000) Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila. J Evol Biol 12:1125–1137

    Article  Google Scholar 

  • Briskie JV, Mackintosh M (2004) Hatching failure increases with severity of population bottlenecks in birds. Proc Natl Acad Sci USA 101:558–561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caccianiga M, Payette S (2006) recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Québec, Canada). J Biogeogr 33:2120–2135

    Article  Google Scholar 

  • Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756

    Article  Google Scholar 

  • Clark RW, Marchand MN, Clifford BJ, Stechert R, Stephens S (2011) Decline of an isolated timber rattlesnake (Crotalus horridus) population: interactions between climate change, disease, and loss of genetic diversity. Biol Conserv 144:886–891

    Article  Google Scholar 

  • Cornuet J-M, Santos F, Beaumont MA, Robert CP, Marin J-M, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism. DNA sequence and microsatellite data. Bioinformatics 30:1187–1189

    CAS  Google Scholar 

  • COSEWIC (2007) COSEWIC assessment and update status report on the eastern hog-nosed snake Heterodon platirhinos in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa

    Google Scholar 

  • Coulon A, Guillot G, Cosson J-F, Angibault JMF, Aulagnier S, Cargnelutti B, Galan M, Hewison AJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679

    Article  CAS  PubMed  Google Scholar 

  • Cunnington G (2004) Modeling habitat use by eastern hog-nosed snakes (Heterodon platirhinos) in Wasaga Beach Provincial Park. Thesis, Trent University, Peterborough, Ontario. B.Sc

    Google Scholar 

  • Cunnington GM, Cebek JE (2005) Mating and nesting behavior of the eastern hognose snake (Heterodon platirhinos) in the northern portion of its range. Am Midl Nat 154:474–478

    Article  Google Scholar 

  • Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frankham R, Lees K, Montgomery ME, England PR, Lowe EH, Briscoe DA (1999) Do population size bottlenecks reduce evolutionary potential? Anim Conserv 2:255–260

    Article  Google Scholar 

  • Funk WC, Forsman ED, Johnson M, Mullins TD, Haig SM (2010) Evidence for recent population bottlenecks in northern spotted owls (Strix occidentalis caurina). Conserv Genet 11:1013–1021

    Article  Google Scholar 

  • Gamache I, Payette S (2005) Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J Biogeogr 32:849–862

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html

  • Goudet J (2006) hierfstat: estimation and tests of hierarchical F-statistics. CRAN repository. http://cran.r-project.org/web/packages/hierfstat/

  • Green DM (2005) Designatable units for status assessment of endangered species. Conserv Biol 19(6):1813–1820

    Article  Google Scholar 

  • Harding JH (1997) Amphibians and reptiles of the Great Lakes region. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Hecnar SJ, M’Closkey RT (1998) Species richness patterns of amphibians in southwestern Ontario ponds. J Biogeogr 25:763–772

    Article  Google Scholar 

  • Hoffman JI, Grant SM, Forcada J, Phillips CD (2011) Bayesian inference of a historical bottleneck in a heavily exploited marine mammal. Mol Ecol 20:3989–4008

    Article  CAS  PubMed  Google Scholar 

  • Ivanova NV, Dewaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    Article  CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jansen KP, Mushinsky HR, Karl SA (2008) Population genetics of the mangrove salt marsh snake, Nerodia clarkia compressicauda, in a linear, fragmented habitat. Conserv Genet 9:401–410

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:19–23

    Google Scholar 

  • Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. J Mammal 78:320–335

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Madsen T, Shine R, Olsen M, Wittzell H (1999) Conservation biology: restoration of an inbred adder population. Nature 402:34–35

    Article  CAS  Google Scholar 

  • Manel S, Bellemain E, Swenson JE, François O (2004) Assumed and inferred spatial structure of populations the Scandinavian brown bears revisited. Mol Ecol 13:1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    PubMed Central  CAS  PubMed  Google Scholar 

  • McCoy RC, Garud NR, Kelley JL, Boggs CL, Petrov DA (2014) Genomic inference accurately predicts the timing and severity of a recent bottleneck in a nonmodel insect population. Mol Ecol 23:136–150

  • Moritz C (1994) Defining ‘Evolutionary Significant Units’ for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Ontario Nature (2015) Ontario Reptile and Amphibian Atlas. http://www.ontarionature.org/protect/species/reptiles_and_amphibians/eastern_hognosed_snake.php

  • Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418

    Article  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. Heredity 86:248–249

    Google Scholar 

  • R Core Development Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Robson L (2011) The spatial ecology of eastern hognose snakes (Heterodon platirhinos): habitat selection, home range size, and the effect of roads on movement patterns. MSc Thesis, University of Ottawa, Ottawa

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rouse JD, Willson RJ, Black R, Brooks RJ (2011) Movement and spatial dispersion of Sistrurus catenatus and Heterodon platirhinos: implications for interactions with roads. Copeia 2011:443–456

    Article  Google Scholar 

  • Row JR, Blouin-Demers G, Lougheed SC (2010) Habitat distribution influences dispersal and fine-scale genetic population structure of eastern foxsnakes (Mintonius gloydi) across a fragmented landscape. Mol Ecol 19:5157–5171

    Article  PubMed  Google Scholar 

  • Row JR, Brooks RJ, MacKinnon CA, Lawson A, Crother BI, White M, Lougheed SC (2011) Approximate Bayesian computation reveals the factors that influence genetic diversity and population structure of foxsnakes. J Evol Biol 24:2364–2377

    Article  CAS  PubMed  Google Scholar 

  • Saccheri IJ, Brakefield PM, Nichols RA (1996) Severe inbreeding depression and rapid fitness rebound in the butterfly Bicyclus anynana (Satyridae). Evolution 50:2000–2013

    Article  Google Scholar 

  • Schwartz TS, Karl SA (2005) Population and conservation genetics of the gopher tortoise (Gopherus polyphemus). Conserv Gen 6:917–928

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slatkin M (2008) Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9:477–485

    Article  CAS  PubMed  Google Scholar 

  • Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9:1517–1528

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Statist Soc B 64:583–639

  • Storfer A, Mech SG, Reudink MW, Lew K (2014) Inbreeding and strong population subdivision in an endangered salamander. Conserv Genet 15:137–151

    Article  Google Scholar 

  • Thornton K, Andolfatto P (2006) Approximate Bayesian inference reveals evidence for a recent, severe bottleneck in a Netherlands population of Drosophila melanogaster. Genetics 172:1607–1619

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wall WA, Douglas NA, Hoffmann WA, Wentworth TR, Gray JB, Xiang QJ, Knaus BK, Hohmann MG (2014) Evidence of population bottleneck in Astragalus michauxii (Fabaceae), a narrow endemic of the southeastern United States. Conserv Genet 15:153–164

    Article  Google Scholar 

  • Waples S (1995) Evolutionary Significant Units and the conservation of biological diversity under the Endangered Species Act. Am Fish Soc Symp 18:8–27

    Google Scholar 

  • Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

  • Xuereb ATJ, Austin JD, Lougheed SC (2014) New microsatellite loci for the threatened eastern hog-nosed snake (Heterodon platirhinos) in Ontario, Canada. Conserv Genet Resour 6:69–71

    Article  Google Scholar 

Download references

Acknowledgments

We thank L. Robson, M. Gartshore, D. Jacobs, T. Tully, A. MacKenzie, K. Otterbein, T. Cameron, S. Sutton, R. Willson, G. Buck, R. Gould, C. Godwin, J. Feltham, T. Moore, G. Cundall, R. Hornsby, C. Jamison, and J. Quan for assistance with sample collection and Z. Sun for genotyping and J.D. Austin for microsatellite development. Funding was provided by NSERC (Discovery Grant to S.C.L. and CGS-M to A.T.J.X.) and the Species at Risk Research Fund for Ontario (SARRFO). We acknowledge support of Parks Canada, Ontario Parks, and Ontario Ministry of Natural Resources. Field collections were sanctioned by the Queen’s University Animal Care Committee (Lougheed-2008-059-R3), Endangered Species Act (PS-B-004-11), and Wildlife Scientific Collector’s Authorization (1062799, 1062623).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Lougheed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3725 kb)

Supplementary material 1 (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuereb, A.T.J., Rouse, J.D., Cunnington, G. et al. Population genetic structure at the northern range limit of the threatened eastern hog-nosed snake (Heterodon platirhinos). Conserv Genet 16, 1265–1276 (2015). https://doi.org/10.1007/s10592-015-0737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0737-x

Keywords

Navigation