Skip to main content

Advertisement

Log in

Fragmentation genetics of the grassland butterfly Polyommatus coridon: Stable genetic diversity or extinction debt?

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat fragmentation can have severe effects on the intraspecific variability of populations and thus plays a pivotal role in species conservation. Especially taxa with specific habitat demands and low dispersal behaviour suffer from habitat fragmentation. One such taxon, the Chalk-hill Blue butterfly, Polyommatus coridon, nowadays mostly occurs in small and isolated, calcareous grasslands across Central Europe. Here we investigate the population genetic structure of 15 local populations of this butterfly species over major parts of the Fränkische Schweiz (south-east Germany). Based on seven polymorphic microsatellites we estimate genetic diversity and differentiation. We use the data to test for potential effects of different habitat sizes, habitat connectivity, and population density. We found high genetic diversity but no significant genetic differentiation among the 15 local populations (F ST = 0.0087, P > 0.05). Genetic diversity was not correlated with habitat size, habitat connectivity, or census population size. But, we found a marginally positive correlation between increasing habitat connectivity and population density (r 2 = 0.31, P < 0.05). Compared to other butterfly species, our data resemble a generalist species with well connected populations rather than a specialist taxon existing in a highly fragmented landscape. The high genetic diversity and the lack of differentiation might either be the result of relatively large and stable local populations and ongoing gene flow, or is the genetic legacy of formerly large and interconnected populations during periods of extensive agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anton C, Zeisset I, Musche M, Durka W, Boomsma JJ, Settele J (2007) Population structure of a large blue butterfly and its specialist parasitoid in a fragmented landscape. Mol Ecol 16:3828–3838

    Article  PubMed  Google Scholar 

  • Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millenium atlas of butterflies in Britain and Ireland. Oxford University Press, Oxford

    Google Scholar 

  • Augenstein B, Ulrich W, Habel JC (2012) Directional temporal shifts in community structure of butterflies and ground beetles in fragmented oligotrophic grasslands of Central Europe. Basic Appl Ecol 13:715–724

    Article  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Article  Google Scholar 

  • Bereczki J, Pecsenye K, Peregovits L, Varga Z (2005) Pattern of genetic differentiation in the Maculinea alcon species group (Lepidoptera, Lycaenidae) in Central Europe. J Zool Sys Evol Res 43:157–165

    Article  Google Scholar 

  • Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Schyut, Haarlem

    Google Scholar 

  • Böhmer HJ (1994) Die Halbtrockenrasen der Fränkischen Alb—Strukturen, Prozesse, Erhaltung. Mitteilungen der Fränkischen Geographischen Gesellschaft 41:323–343

    Google Scholar 

  • Brereton TM, Warren MS, Roy DB, Stewart K (2008) The changing status of the Chalk-hill Blue butterfly Polyommatus coridon in the UK: the impacts of conservation policies and environmental factors. J Insect Conserv 12:629–638

    Article  Google Scholar 

  • Brückmann SV, Krauss J, Steffan-Dewenter I (2010a) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809

    Article  Google Scholar 

  • Brückmann SV, Krauss J, von Achterberg C, Steffan-Dewenter I (2010b) The impact of habitat fragmentation on trophic interactions of the monophagous butterfly Polyommatus coridon. J Insect Conserv 15:707–714

    Article  Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Chybicki IJ, Burczky J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Heredity 100:106–113

    Article  CAS  Google Scholar 

  • Cowley MJR, Thomas CD, Roy DB, Wilson RJ, León-Cortés JL, Gutiérrez D, Bulman CR, Quinn RM, Moss D, Gaston KJ (2001) Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. J Anim Ecol 70:410–425

  • Crnokrak P, Barrett SCH (2002) Purging the genetic load: a review of the experimental evidence. Evolution 56:2347–2358

    Article  PubMed  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter MJ (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Dennis RLH, Dapporto L, Fattorini S, Cook LM (2011) The generalism–specialism debate: the role of generalists in the life and death of species. Biol J Linn Soc 104:725–737

    Article  Google Scholar 

  • Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs, vol 1. E. Ulmer, Stuttgart

    Google Scholar 

  • ESRI (1995) ArcView GIS for Windows, version 3.2. ESRI, Redlands, California

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Finger A, Schmitt T, Zachos FE, Meyer M, Assmann T, Habel JC (2009) The genetic status of the violet copper Lycaena helle—a relict of the cold past in times of global warming. Ecography 32:383–390

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gadeberg RME, Boomsma JJ (1997) Genetic population structure of the large blue butterfly Maculinea alcon in Denmark. J Insect Conserv 1:99–111

    Article  Google Scholar 

  • Gautschi B, Tenzer I, Müller JP, Schmid B (2000a) Isolation and characterization of microsatellite loci in the bearded vulture (Gypaetus barbatus) and cross amplification in three old world vulture species. Mol Ecol 9:2193–2195

    Article  CAS  PubMed  Google Scholar 

  • Gautschi B, Widmer A, Koella J (2000b) Isolation and characterization of microsatellite loci in the dice snake (Natrix tessellata). Mol Ecol 9:2191–2193

    CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Heredity 86:485–486

    Google Scholar 

  • Habel JC, Schmitt T (2009) The genetic consequences of different dispersal behaviours in Lycaenid butterfly species. Bull Entomol Res 99:513–523

    Article  CAS  PubMed  Google Scholar 

  • Habel JC, Schmitt T (2012) The burden of genetic diversity. Biol Conserv 147:270–274

    Article  Google Scholar 

  • Habel JC, Schmitt T, Meyer M, Finger A, Rödder D, Assmann T, Zachos FE (2010) Biogeography meets conservation: the genetic structure of the endangered lycaenid butterfly Lycaena helle (Denis & Schiffermüller, 1775). Biol J Linn Soc 101:155–168

    Article  Google Scholar 

  • Habel JC, Rödder D, Schmitt T, Nève G (2011) Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Global Change Biol 17:194–205

    Article  Google Scholar 

  • Habel JC, Rödder D, Schmitt T, Lens L (2013) The genetic signature of ecologically diverging grassland lepidopterans. Biodiv Conserv 22:2401–2411

    Article  Google Scholar 

  • Hamilton MB, Pincus EL, Di Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–507

    CAS  PubMed  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Article  Google Scholar 

  • Harper GL, Maclean N, Goulson D (2003) Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus. Mol Ecol 12:2249–3357

    Article  Google Scholar 

  • Hunt JJFG, Bonsall MB (2009) The effects of colonization, extinction and competition on co-existence in metacommunities. J Anim Ecol 78:866–879

    Article  PubMed  Google Scholar 

  • Karl I, Schmitt T, Fischer K (2009) PGI genotype affects life history traits and temperature stress resistance in a copper butterfly. Func Ecol 22:887–894

    Article  Google Scholar 

  • Keller I, Nentwig W, Largiader CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994

    Article  CAS  PubMed  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (2002) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (2005) Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Mol Ecol 14:1897–1909

    Article  CAS  PubMed  Google Scholar 

  • Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900

    Article  Google Scholar 

  • Krauss J, Schmitt T, Seitz A, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polyommatus coridon along its northern range margin. Mol Ecol 13:311–320

    Article  PubMed  Google Scholar 

  • Krauss J, Steffan-Dewenter I, Müller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28:465–474

    Article  Google Scholar 

  • Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605

    Article  PubMed Central  PubMed  Google Scholar 

  • Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM (1999) The second silent spring? Nature 400:611–612

    Article  CAS  Google Scholar 

  • Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz e.V, Halle 576 pp

    Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

  • Louy D, Habel JC, Schmitt T, Meyer M, Assmann T, Müller P (2007) Strongly diverging population genetic patterns of three skipper species: isolation, restricted gene flow and panmixis. Conserv Genet 8:671–681

    Article  Google Scholar 

  • Madsen T, Ujvari B, Olsson M (2004) Novel genes continue to enhance population growth in adders (Vipera berus). Biol Conserv 120:145–147

    Article  Google Scholar 

  • Meglecz E, Petenian F, Danchin E, Coeur d´Acier S, Rasplus J-Y, Faure E (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Mol Ecol 13:1693–1700

  • Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103

    Article  CAS  PubMed  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pecsenye K, Bereczki J, Tihanyi B, Tóth A, Peregovits L, Varga Z (2007a) Genetic differentiation among the Maculinea species (Lepidoptera: Lycaenidae) in eastern Central Europe. Biol J Linn Soc 91:11–21

    Article  Google Scholar 

  • Pecsenye K, Bereczki J, Szilágyi M, Varga Z (2007b) High level of genetic variation in Aricia artaxerxes issekutzi (Lycaenidae) populations in Northern Hungary. Nota Lepidopterologica 30:225–234

    Google Scholar 

  • Petit S, Moilanen A, Hanski I, Baguette M (2003) Metapopulation dynamics of the bog fritillary butterfly: movements between habitat patches. Oikos 92:491–500

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Google Scholar 

  • Reinhardt R, Feldmann R, Herrmann G, Settele J, Steiner R (2009) Schmetterlinge: Die Tagfalter Deutschlands, Ulmer Verlag

  • Rosin ZM, Myczko L, Skórka P, Lenda M, Moron D, Sparks TH, Tryjanowski P (2012) Butterfly responses to environmental factors in fragmented calcareous grasslands. J Insect Conserv 16:321–329

    Article  Google Scholar 

  • Rousset F (2008) Genepop 007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Rutkowski R, Sielezniew M, Szostak A (2009) Contrasting levels of polymorphism in cross-amplified microsatellites in two endangered xerothermophilous, obligatorily myrmecophilous, butterflies of the genus Phengaris (Maculinea) (Lepidoptera: Lycaenidae). Eur J Entomol 106:457–469

    Article  CAS  Google Scholar 

  • Saccheri I, Kuusaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Schmitt T, Seitz A (2001) Allozyme variation in Polyommatus coridon (Lepidoptera: Lycaenidae): identification of ice-age refugia and reconstruction of post-glacial expansion. J Biogeogr 28:1129–1136

  • Schmitt T, Seitz A (2002a) Influence of habitat fragmentation on the genetic structure of Polyommatus coridon (Lepidoptera: Lycaenidae): implications for conservation. Biol Conserv 107:291–297

    Article  Google Scholar 

  • Schmitt T, Seitz A (2002b) Postglacial distribution area expansion of Polyommatus coridon (Lepidoptera: Lycaenidae) from its Ponto-Mediterranean glacial refugium. Heredity 89:20–26

    Article  CAS  PubMed  Google Scholar 

  • Schmitt T, Gießl A, Seitz A (2003) Did Polyommatus icarus (Lepidoptera: Lycaenidae) have distinct glacial refugia in southern Europe?—Evidence from population genetics. Biol J Linn Soc 80:529–538

    Article  Google Scholar 

  • Schmitt T, Habel JC, Besold J, Becker T, Johnen L, Knolle M, Rzepecki A, Schultze J, Zapp A (2006) The Chalk-hill Blue Polyommatus coridon (Lycaenidae, Lepidoptera) in a highly fragmented landscape: how sedentary is a sedentary butterfly? J Insect Conserv 10:311–316

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Settele J, Feldmann R, Reinhardt R (2000) Die Tagfalter Deutschlands. Ulmer, Stuttgart

    Google Scholar 

  • Sielezniew M, Rutkowski R (2012) Population isolation rather than ecological variation explains the genetic structure of endangered myrmecophilous butterfly Phengaris (=Maculinea) arion. Insect Conserv Div 5:223–236

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787

    Article  CAS  PubMed  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456

    Article  Google Scholar 

  • Stork VL, Waits L (2010) Contributions of landscape genetics—approaches, insights, and future potential. Mol Ecol 19:3489–3495

    Article  Google Scholar 

  • Ugelvig LV, Andersen A, Boomsma JJ, Nash DR (2012) Dispersal and gene flow in the rare, parasitic large blue butterfly Maculinea arion. Mol Ecol 21:3224–3236

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Van Swaay C, Warren M, Loïs G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209

    Article  Google Scholar 

  • WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in Northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273

    Article  Google Scholar 

  • Zeisset I, Als TD, Settele J, Boomsma JJ (2005) Microsatellite markers for the large blue butterflies Maculinea nausithous and Maculinea alcon (Lepidoptera: Lycaenidae) and their amplification in other Maculinea species. Mol Ecol Notes 5:165–168

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the EU 6FP project COCONUT, Contract Number 2006-044346 to ISD and JK, and by the EU FP7 SCALES project, project #226852 to ISD and JK. We are grateful for valuable comments on this manuscript by Thomas Schmitt (Müncheberg, Germany) and Emily Martin (Würzburg, Germany). We thank Mike Teucher (Trier, Germany) for generating Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina V. Brückmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habel, J.C., Brückmann, S.V., Krauss, J. et al. Fragmentation genetics of the grassland butterfly Polyommatus coridon: Stable genetic diversity or extinction debt?. Conserv Genet 16, 549–558 (2015). https://doi.org/10.1007/s10592-014-0679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0679-8

Keywords

Navigation