Skip to main content
Log in

Optimal portfolio selections via \(\ell _{1, 2}\)-norm regularization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

There has been much research about regularizing optimal portfolio selections through \(\ell _1\) norm and/or \(\ell _2\)-norm squared. The common consensuses are (i) \(\ell _1\) leads to sparse portfolios and there exists a theoretical bound that limits extreme shorting of assets; (ii) \(\ell _2\) (norm-squared) stabilizes the computation by improving the condition number of the problem resulting in strong out-of-sample performance; and (iii) there exist efficient numerical algorithms for those regularized portfolios with closed-form solutions each step. When combined such as in the well-known elastic net regularization, theoretical bounds are difficult to derive so as to limit extreme shorting of assets. In this paper, we propose a minimum variance portfolio with the regularization of \(\ell _1\) and \(\ell _2\) norm combined (namely \(\ell _{1, 2}\)-norm). The new regularization enjoys the best of the two regularizations of \(\ell _1\) norm and \(\ell _2\)-norm squared. In particular, we derive a theoretical bound that limits short-sells and develop a closed-form formula for the proximal term of the \(\ell _{1,2}\) norm. A fast proximal augmented Lagrange method is applied to solve the \(\ell _{1,2}\)-norm regularized problem. Extensive numerical experiments confirm that the new model often results in high Sharpe ratio, low turnover and small amount of short sells when compared with several existing models on six datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://finance.yahoo.com/.

  2. https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

References

  1. Beck, A.: First-Order Methods in Optimization. SIAM and Mathematical Optimization Society, Philadelphia (2017)

    Book  Google Scholar 

  2. Behr, P., Guettler, A., Miebs, F.: On portfolio optimization: imposing the right constraints. J. Bank. Finance 37, 1232–1242 (2013)

    Article  Google Scholar 

  3. Ben, G.-Y., Noureddine, E.K., LIM, A..E.B.: Machine learning and portfolio optimization. Manag. Sci. 64(3), 1136–1154 (2018)

    Article  Google Scholar 

  4. Brodie, J., Daubechies, I., De Mol, C., Giannone, D., Loris, I.: Sparse and stable Markowitz portfolios. Proc. Natl. Acad. Sci. USA 106, 12267–12272 (2009)

    Article  Google Scholar 

  5. Candés, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chou, R.K., Chung, H.: Decimalization, trading costs, and information transmission between ETFs and index futures. J. Futures Mark. Futures Options Other Deriv. Prod. 26(2), 131–151 (2006)

    Google Scholar 

  7. Dai, Z., Wen, F.: Some improved sparse and stable portfolio optimization problems. Financ. Res. Lett. 27, 46–52 (2018)

    Article  Google Scholar 

  8. DeMiguel, V., Garlappi, L., Nogales, F.J., Uppal, R.: A generalized approach to portoflio optimization: improving performance by constraining portfolio norms. Manag. Sci. 55, 798–812 (2009)

    Article  Google Scholar 

  9. DeMiguel, V., Garlappi, L., Uppal, R.: Optimal versus naive diversification: How inefficient is the \(1/N\) portfolio strategy? Rev. Financ. Stud. 22, 1915–1953 (2009)

    Article  Google Scholar 

  10. Fan, J., Zhang, J., Yu, K.: Vast portfolio selection with gross exposure constraints. J. Am. Stat. Assoc. 107, 592–606 (2012)

    Article  MathSciNet  Google Scholar 

  11. Fastrich, B., Paterlini, S., Winker, P.: Constructing optimal sparse portfolios using regularization methods. Comput. Manag. Sci. 12, 417–434 (2015)

    Article  MathSciNet  Google Scholar 

  12. Fazel, M., Pong, T.K., Sun, D., Tseng, P.: Hankel matrix rank mininization with applications to system identification and realization. SIAM J. Matrix Anal. Appl. 34, 946–977 (2013)

    Article  MathSciNet  Google Scholar 

  13. Giuzio, M., Paterlini, S.: Un-diversifying during crises: Is it a good idea? CMS 16, 401–432 (2019)

    Article  MathSciNet  Google Scholar 

  14. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx (2010)

  15. Green, R.C., Hollifield, B.: When will mean-variance efficient portfolios be well diversified? J. Financ. 47(5), 1785–1809 (1992)

    Article  Google Scholar 

  16. Ho, M., Sun, Z., Xin, J.: Weighted elastic net penalized mean-variance portfolio design and computation. SIAM J. Financ. Math. 6, 1220–1244 (2015)

    Article  MathSciNet  Google Scholar 

  17. Jagannathan, R., Ma, T.: Risk reduction in large portfolios: why imposing the wrong constraints helps. J. Financ. 58, 57–72 (2003)

    Article  Google Scholar 

  18. Kremer, P.J., Lee, S., Bogdan, M., Paterlini, S.: Sparse portfolio selection via the sorted \(\ell _{1}\)-Norm. J. Bank. Finance 110, 105687 (2020)

    Article  Google Scholar 

  19. Lai, Z.R., Yang, P.Y., Fang, L., Wu, X.: Short-term sparse portfolio optimization based on alternating direction method of multipliers. J. Mach. Learn. Res. 19(1), 2547–2574 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Lhabitant, F.-S.: Portfolio Diversification. ISTE Press Ltd and Elsevier Ltd., Amsterdam (2017)

    Google Scholar 

  21. Li, J.: Sparse and stable portfolio selection with parameter uncertainty. J. Bus. Econ. Stat. 33, 381–392 (2015)

    Article  MathSciNet  Google Scholar 

  22. Maillet, B., Tokpavi, S., Vaucher, B.: Global minimum variance portfolio optimisation under some model risk: a robust regression-based approach. Eur. J. Oper. Res. 244(1), 289–299 (2015)

    Article  MathSciNet  Google Scholar 

  23. Markowitz, H.: Portfolio selection. J. Financ. 7, 77–91 (1952)

    Google Scholar 

  24. Merton, R.: On estimating the expected return on the market: an exploratory investigation. J. Financ. Econ. 8, 323–361 (1980)

    Article  Google Scholar 

  25. Olivier, L., Wolf, M.: Analytical nonlinear shrinkage of large-dimensional covariance matrices. Ann. Stat. 48(5), 3043–3065 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Olivier, L., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88(2), 365–411 (2004)

    Article  MathSciNet  Google Scholar 

  27. Olivier, L., Wolf, M.: Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J. Empir. Financ. 10(5), 603–621 (2003)

    Article  Google Scholar 

  28. Perrin, S., Roncalli, T.: Machine learning optimization: algorithms and portfolio allocation. In: Machine Learning for Asset Management: New Developments and Financial Applications, pp. 261–328 (2020)

  29. Shen, W., Wang, J., Ma, S.: Doubly regularized portfolio with risk minimization. AAA I, 1286–1292 (2014)

    Google Scholar 

  30. Takeda, A., Niranjan, M., Gotoh, J.Y., Kawahara, Y.: Simultaneous pursuit of out-of-sample performance and sparsity in index tracking portfolios. CMS 10, 21–49 (2013)

    Article  MathSciNet  Google Scholar 

  31. Teng, Y., Yang, L., Yu, B., Song, X.: A penalty PALM method for sparse portfolio selection problems. Optim. Methods Softw. 32(1), 126–147 (2017)

    Article  MathSciNet  Google Scholar 

  32. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Yen, Y.-M.: Sparse weighted-norm minimum variance portfolios. Rev. Finance, pp. 1–29 (2015)

  34. Yen, Y.-M., Yen, T.J.: Solving norm constrained portfolio optimization via coordinate-wise descent algorithms. Comput. Stat. Data Anal. 76, 737–759 (2014)

    Article  MathSciNet  Google Scholar 

  35. Zhang, H., Jiang, J., Luo, Z.-Q.: On the linear convergence of a proximal gradient method for a class of nonsmooth convex minimization problems. J. Oper. Res. Soc. China 1, 163–186 (2013)

    Article  Google Scholar 

  36. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the editor and two referees for their detailed comments that have improved the quality of the paper. In particular, one referee points us to the much relevant paper [35], which leads to the comment Remark 3 in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingchen Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper was supported in part by 111 Project of China (B16002), IEC/NSFC/191543 and NSFC(12071022)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Kong, L. & Qi, HD. Optimal portfolio selections via \(\ell _{1, 2}\)-norm regularization. Comput Optim Appl 80, 853–881 (2021). https://doi.org/10.1007/s10589-021-00312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-021-00312-4

Keywords

Mathematics Subject Classification

Navigation