Skip to main content
Log in

Exploiting term sparsity in noncommutative polynomial optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We provide a new hierarchy of semidefinite programming relaxations, called NCTSSOS, to solve large-scale sparse noncommutative polynomial optimization problems. This hierarchy features the exploitation of term sparsity hidden in the input data for eigenvalue and trace optimization problems. NCTSSOS complements the recent work that exploits correlative sparsity for noncommutative optimization problems by Klep et al. (MP, 2021), and is the noncommutative analogue of the TSSOS framework by Wang et al. (SIAMJO 31: 114–141, 2021, SIAMJO 31: 30–58, 2021). We also propose an extension exploiting simultaneously correlative and term sparsity, as done previously in the commutative case (Wang in CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization, 2020). Under certain conditions, we prove that the optima of the NCTSSOS hierarchy converge to the optimum of the corresponding dense semidefinite programming relaxation. We illustrate the efficiency and scalability of NCTSSOS by solving eigenvalue/trace optimization problems from the literature as well as randomly generated examples involving up to several thousand variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://github.com/wangjie212/NCTSSOS.

  2. The polynomials are available at https://wangjie212.github.io/jiewang/code.html.

References

  1. Agler, J., Helton, W., McCullough, S., Rodman, L.: Positive semidefinite matrices with a given sparsity pattern. Linear Algebra Appl. 107, 101–149 (1988)

    Article  MathSciNet  Google Scholar 

  2. Anjos, M.F., Lasserre, J.B. (eds.): Handbook on semidefinite, conic and polynomial optimization. International Series in Operations Research & Management Science

  3. ApS, M.: The MOSEK optimization toolbox. Version 8.1. (2017). http://docs.mosek.com/8.1/toolbox/index.html

  4. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    Article  MathSciNet  Google Scholar 

  5. Blair, J.R., Peyton, B.: An introduction to chordal graphs and clique trees. In: Graph Theory and Sparse Matrix Computation. pp. 1–29. Springer (1993)

  6. Bodlaender, H.L., Koster, A.M.: Treewidth computations I: upper bounds. Inf. Comput. 208(3), 259–275 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bromberger, S., Fairbanks, J., other contributors: JuliaGraphs/LightGraphs.jl: an optimized graphs package for the julia programming language (2017). 10.5281/zenodo.889971

  8. Bugarin, F., Henrion, D., Lasserre, J.B.: Minimizing the sum of many rational functions. Math. Programm. Comput. 8(1), 83–111 (2016)

    Article  MathSciNet  Google Scholar 

  9. Burgdorf, S., Cafuta, K., Klep, I., Povh, J.: The tracial moment problem and trace-optimization of polynomials. Math. Program. 137(1–2), 557–578 (2013). https://doi.org/10.1007/s10107-011-0505-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Burgdorf, S., Cafuta, K., Klep, I., Povh, J.: The tracial moment problem and trace-optimization of polynomials. Math. Program. 137(1), 557–578 (2013)

    Article  MathSciNet  Google Scholar 

  11. Burgdorf, S., Klep, I., Povh, J.: Optimization of polynomials in non-commuting variables, vol. 2. Springer, bERLIN (2016)

  12. Cafuta, K., Klep, I., Povh, J.: Constrained polynomial optimization problems with noncommuting variables. SIAM J. Optim. 22(2), 363–383 (2012). https://doi.org/10.1137/110830733

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, T., Lasserre, J.B., Magron, V., Pauwels, E.: Polynomial optimization for bounding Lipschitz constants of deep networks. arXiv preprint arXiv:2002.03657 (2020)

  14. Dunning, I., Huchette, J., Lubin, M.: JuMP: A modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)

    Article  MathSciNet  Google Scholar 

  15. Gribling, S., De Laat, D., Laurent, M.: Lower bounds on matrix factorization ranks via noncommutative polynomial optimization. Found. Comput. Math. 19(5), 1013–1070 (2019)

    Article  MathSciNet  Google Scholar 

  16. Gribling, S., de Laat, D., Laurent, M.: Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization. Math. Program. 170(1), 5–42 (2018)

    Article  MathSciNet  Google Scholar 

  17. Grone, R., Johnson, C.R., Sá, E.M., Wolkowicz, H.: Positive definite completions of partial Hermitian matrices. Linear Algebra Appl. 58, 109–124 (1984)

    Article  MathSciNet  Google Scholar 

  18. Helton, J., McCullough, S.: A Positivstellensatz for non-commutative polynomials. Trans. Am. Math. Soc. 356(9), 3721–3737 (2004)

    Article  MathSciNet  Google Scholar 

  19. Helton, J.W.: Positive noncommutative polynomials are sums of squares. Ann. Math. 156, 675–694 (2002)

    Article  MathSciNet  Google Scholar 

  20. Josz, C., Molzahn, D.K.: Lasserre hierarchy for large scale polynomial optimization in real and complex variables. SIAM J. Optim. 28(2), 1017–1048 (2018)

    Article  MathSciNet  Google Scholar 

  21. Klep, I., Magron, V., Povh, J.: Sparse noncommutative polynomial optimization. Math Programm. (2021). https://doi.org/10.1007/s10107-020-01610-1

    Article  Google Scholar 

  22. Klep, I., Magron, V., Volčič, J.: Optimization over trace polynomials. arXiv preprint arXiv:2006.12510 (2020)

  23. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  24. Lasserre, J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17(3), 822–843 (2006)

    Article  MathSciNet  Google Scholar 

  25. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. Emerg. Appl. Algebr. Geom. (2009). https://doi.org/10.1007/978-0-387-09686-5_7

    Article  MATH  Google Scholar 

  26. Magron, V.: Interval enclosures of upper bounds of roundoff errors using semidefinite programming. ACM Trans. Math. Softw. 44(4), 1–18 (2018)

    Article  MathSciNet  Google Scholar 

  27. Magron, V., Constantinides, G., Donaldson, A.: Certified roundoff error bounds using semidefinite programming. ACM Trans. Math. Softw. 43(4), 1–34 (2017)

    Article  MathSciNet  Google Scholar 

  28. Mai, N.H.A., Lasserre, J.B., Magron, V., Wang, J.: Exploiting constant trace property in large-scale polynomial optimization. arXiv preprint arXiv:2012.08873 (2020)

  29. Mai, N.H.A., Magron, V., Lasserre, J.B.: A sparse version of Reznick’s Positivstellensatz. arXiv preprint arXiv:2002.05101 (2020)

  30. Marecek, J., Vala, J.: Quantum optimal control via magnus expansion: The non-commutative polynomial optimization problem. arXiv preprint arXiv:2001.06464 (2020)

  31. Navascués, M., Pironio, S., Acín, A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10(7), 073013 (2008)

    Article  Google Scholar 

  32. Pál, K.F., Vértesi, T.: Quantum bounds on Bell inequalities. Phys. Rev. A 79(2), 022120 (2009)

    Article  MathSciNet  Google Scholar 

  33. Pironio, S., Navascués, M., Acín, A.: Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010). https://doi.org/10.1137/090760155

    Article  MathSciNet  MATH  Google Scholar 

  34. Pironio, S., Navascués, M., Acin, A.: Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010)

    Article  MathSciNet  Google Scholar 

  35. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993). https://doi.org/10.1512/iumj.1993.42.42045

    Article  MathSciNet  MATH  Google Scholar 

  36. Reznick, B., et al.: Extremal PSD forms with few terms. Duke Math. Jo. 45(2), 363–374 (1978)

    MathSciNet  MATH  Google Scholar 

  37. Skelton, R.E., Iwasaki, T., Grigoriadis, D.E.: A Unified Algebraic Approach to Control Design. CRC Press, Boca Raton (1997)

    Google Scholar 

  38. Tacchi, M., Weisser, T., Lasserre, J.B., Henrion, D.: Exploiting sparsity for semi-algebraic set volume computation. Foundations of Computational Mathematics pp. 1–49 (2021)

  39. Takesaki, M.: Theory of operator algebras. III, Encyclopaedia of Mathematical Sciences, vol. 127. Springer-Verlag, Berlin (2003). https://doi.org/10.1007/978-3-662-10453-8. Operator Algebras and Non-commutative Geometry, 8

  40. Vandenberghe, L., Andersen, M.S., et al.: Chordal graphs and semidefinite optimization. Found. Trends Regist. Optim. 1(4), 241–433 (2015)

    Article  Google Scholar 

  41. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)

    Article  MathSciNet  Google Scholar 

  42. Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: Algorithm 883: SparsePOP: a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35(2), 1–13 (2008)

    Article  MathSciNet  Google Scholar 

  43. Wang, J.: ChordalGraph: A Julia package to handle chordal graphs (2020). https://github.com/wangjie212/ChordalGraph

  44. Wang, J., Li, H., Xia, B.: A new sparse SOS decomposition algorithm based on term sparsity. In: Proceedings of the 2019 on international symposium on symbolic and algebraic computation, pp. 347–354 (2019)

  45. Wang, J., Maggio, M., Magron, V.: SparseJSR: A fast algorithm to compute joint spectral radius via sparse SOS decompositions. In: 2021 American Control Conference. IEEE (2021)

  46. Wang, J., Magron, V., Lasserre, J.B.: Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension. SIAM J. Optim. 31(1), 114–141 (2021)

    Article  MathSciNet  Google Scholar 

  47. Wang, J., Magron, V., Lasserre, J.B.: TSSOS: a moment-SOS hierarchy that exploits term sparsity. SIAM J. Optim. 31(1), 30–58 (2021)

    Article  MathSciNet  Google Scholar 

  48. Wang, J., Magron, V., Lasserre, J.B., Mai, N.H.A.: CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization. arXiv:2005.02828 (2020)

  49. Yurtsever, A., Tropp, J.A., Fercoq, O., Udell, M., Cevher, V.: Scalable semidefinite programming. SIAM J. Math. Data Sci. 3(1), 171–200 (2021)

    Article  MathSciNet  Google Scholar 

  50. Zhou, Q., Marecek, J.: Proper learning of linear dynamical systems as a non-commutative polynomial optimisation problem. arXiv preprint arXiv:2002.01444 (2020)

  51. Zhou, Q., Marecek, J., Shorten, R.N.: Fairness in forecasting and learning linear dynamical systems. arXiv preprint arXiv:2006.07315 (2020)

Download references

Acknowledgements

Both authors were supported by the Tremplin ERC Stg Grant ANR-18-ERC2-0004-01 (T-COPS project). The second author was supported by the FMJH Program PGMO (EPICS project) and EDF, Thales, Orange et Criteo, as well as the PHC Proteus Program (QUANTPOP project \(\hbox {n}^{\circ }\)46195TA). This work has benefited from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions, grant agreement 813211 (POEMA) as well as from the AI Interdisciplinary Institute ANITI funding, through the French “Investing for the Future PIA3” program under the Grant agreement \(\hbox {n}^{\circ }\)ANR-19-PI3A-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Magron.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Magron, V. Exploiting term sparsity in noncommutative polynomial optimization. Comput Optim Appl 80, 483–521 (2021). https://doi.org/10.1007/s10589-021-00301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-021-00301-7

Keywords

Mathematics Subject Classification

Navigation