Skip to main content
Log in

Secant update version of quasi-Newton PSB with weighted multisecant equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Quasi-Newton methods are often used in the frame of non-linear optimization. In those methods, the quality and cost of the estimate of the Hessian matrix has a major influence on the efficiency of the optimization algorithm, which has a huge impact for computationally costly problems. One strategy to create a more accurate estimate of the Hessian consists in maximizing the use of available information during this computation. This is done by combining different characteristics. The Powell-Symmetric-Broyden method (PSB) imposes, for example, the satisfaction of the last secant equation, which is called secant update property, and the symmetry of the Hessian (Powell in Nonlinear Programming 31–65, 1970). Imposing the satisfaction of more secant equations should be the next step to include more information into the Hessian. However, Schnabel proved that this is impossible (Schnabel in quasi-Newton methods using multiple secant equations, 1983). Penalized PSB (pPSB), works around the impossibility by giving a symmetric Hessian and penalizing the non-satisfaction of the multiple secant equations by using weight factors (Gratton et al. in Optim Methods Softw 30(4):748–755, 2015). Doing so, he loses the secant update property. In this paper, we combine the properties of PSB and pPSB by adding to pPSB the secant update property. This gives us the secant update penalized PSB (SUpPSB). This new formula that we propose also avoids matrix inversions, which makes it easier to compute. Next to that, SUpPSB also performs globally better compared to pPSB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahookhosh, M., Ghaderi, S.: On efficiency of nonmonotone Armijo-type line searches. Appl. Math. Model. 43, 170–190 (2017)

    Article  MathSciNet  Google Scholar 

  2. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)

    Article  MathSciNet  Google Scholar 

  3. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation AX + XB = C [F4]. Commun. ACM 15(9), 820–826 (1972)

    Article  Google Scholar 

  4. Broyden, C.: On the discovery of the “good Broyden” method. Math. Program. 87(2), 209–213 (2000)

    Article  MathSciNet  Google Scholar 

  5. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19(92), 577–593 (1965)

    Article  MathSciNet  Google Scholar 

  6. Broyden, C.G.: Quasi-Newton methods and their application to function minimisation. Math. Comput. 21(99), 368–381 (1967)

    Article  MathSciNet  Google Scholar 

  7. Chen, C., Luo, L., Han, C., Chen, Y.: Global convergence of an extended descent algorithm without line search for unconstrained optimization. Parameters 1, 2 (2018)

    Google Scholar 

  8. Degroote, J., Bathe, K.J., Vierendeels, J.: Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87(11–12), 793–801 (2009)

    Article  Google Scholar 

  9. Degroote, J., Hojjat, M., Stavropoulou, E., Wüchner, R., Bletzinger, K.U.: Partitioned solution of an unsteady adjoint for strongly coupled fluid-structure interactions and application to parameter identification of a one-dimensional problem. Struct. Multidiscip. Optim. 47(1), 77–94 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ding, Y., Lushi, E., Li, Q.: Investigation of Quasi-Newton Methods for Unconstrained Optimization. Simon Fraser University, Burnaby (2004)

    Google Scholar 

  11. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  12. Errico, R.M.: What is an adjoint model? Bull. Am. Meteorol. Soc. 78(11), 2577–2591 (1997)

    Article  Google Scholar 

  13. Gratton, S., Malmedy, V., Toint, P.L.: Quasi-Newton updates with weighted secant equations. Optim. Methods Softw. 30(4), 748–755 (2015)

    Article  MathSciNet  Google Scholar 

  14. Haelterman, R.: Analytical study of the least squares quasi-Newton method for interaction problems. Ph.D. thesis, Ghent University (2009)

  15. Haelterman, R., Bogaers, A., Degroote, J., Boutet, N.: Quasi-Newton methods for the acceleration of multi-physics codes. IAENG Int. J. Appl. Math. 47(3), 352–360 (2017)

    MathSciNet  Google Scholar 

  16. Jarlebring, E.: KTH royal institute of technology in Stockholm, lecture notes: numerical methods for Lyapunov equations. https://people.kth.se/~eliasj/NLA/matrixeqs.pdf. Last visited on 07 Jan 2018

  17. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Raleigh (1999)

    Book  Google Scholar 

  18. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. (TOMS) 7(1), 17–41 (1981)

    Article  MathSciNet  Google Scholar 

  19. Neumaier, A.: Universität Wien, Personnal Webpage: Global Optimization Test Problems.http://www.mat.univie.ac.at/~neum/glopt/test.html and http://www.mat.univie.ac.at/~neum/glopt/bounds.html. Last visited on 04 Feb 2018

  20. Patelli, E., Pradlwarter, H.J.: Monte Carlo gradient estimation in high dimensions. Int. J. Numer. Methods Eng. 81(2), 172–188 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Plessix, R.E.: A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 167(2), 495–503 (2006)

    Article  Google Scholar 

  22. Powell, M.J.D.: A new algorithm for unconstrained optimization. In: Nonlinear Programming, pp. 31–65. Elsevier (1970)

  23. Rheinboldt, W.C.: University of Pittsburgh, Lecture Notes: Quasi-Newton Methods. Url: https://www-m2.ma.tum.de/foswiki/pub/M2/Allgemeines/SemWs09/quasi-newt.pdf. Last visited on 07 Jan 2018

  24. Ruiz, D.: A scaling algorithm to equilibrate both rows and columns norms in matrices. Technical report, CM-P00040415 (2001)

  25. Schnabel, R.B.: Quasi-Newton Methods Using Multiple Secant Equations. Technical report, DTIC Document (1983)

  26. Zhang, J., Xu, C.: Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations. J. Comput. Appl. Math. 137(2), 269–278 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Boutet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutet, N., Haelterman, R. & Degroote, J. Secant update version of quasi-Newton PSB with weighted multisecant equations. Comput Optim Appl 75, 441–466 (2020). https://doi.org/10.1007/s10589-019-00164-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00164-z

Keywords

Mathematics Subject Classification

Navigation