Skip to main content
Log in

Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider the convex quadratic linearly constrained problem with bounded variables and with huge and dense Hessian matrix that arises in many applications such as the training problem of bias support vector machines. We propose a decomposition algorithmic scheme suitable to parallel implementations and we prove global convergence under suitable conditions. Focusing on support vector machines training, we outline how these assumptions can be satisfied in practice and we suggest various specific implementations. Extensions of the theoretical results to general linearly constrained problem are provided. We included numerical results on support vector machines with the aim of showing the viability and the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  2. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. arXiv preprint arXiv:1606.04838 (2016)

  3. Cao, L.J., Keerthi, S.S., Ong, C.J., Zhang, J.Q., Lee, H.P.: Parallel sequential minimal optimization for the training of support vector machines. IEEE Trans. Neural Netw. 17(4), 1039–1049 (2006)

    Article  Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  5. Chen, P.H., Fan, R.E., Lin, C.J.: A study on SMO-type decomposition methods for support vector machines. IEEE Trans. Neural Netw. 17(4), 893–908 (2006)

    Article  Google Scholar 

  6. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish routing in capacitated networks. Math. Oper. Res. 29(4), 961–976 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives. In: Advances in Neural Information, vol. 2, pp. 1646–1654 (2014)

  8. Facchinei, F., Scutari, G., Sagratella, S.: Parallel selective algorithms for nonconvex big data optimization. IEEE Trans. Signal Process. 63(7), 1874–1889 (2015). https://doi.org/10.1109/TSP.2015.2399858

    Article  MathSciNet  Google Scholar 

  9. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  10. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Glasmachers, T., Igel, C.: Maximum-gain working set selection for SVMs. J. Mach. Learn. Res. 7, 1437–1466 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Glasmachers, T., Igel, C.: Second-order SMO improves SVM online and active learning. Neural Comput. 20(2), 374–382 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gonzalez-Lima, M.D., Hager, W.W., Zhang, H.: An affine-scaling interior-point method for continuous knapsack constraints with application to support vector machines. SIAM J. Optim. 21(1), 361–390 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Graf, H.P., Cosatto, E., Bottou, L., Dourdanovic, I., Vapnik, V.: Parallel support vector machines: the cascade SVM. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information, vol. 17, pp. 521–528. MIT Press, Cambridge (2004). http://books.nips.cc/papers/files/nips17/NIPS2004_0190.pdf

  15. Joachims, T.: Making large scale SVM learning practical. In: Schölkopf, C., Burges, C., Smola, A. (eds.) Advances in Kernel Methods—Support Vector Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  16. Kamesam, P.V., Meyer, R.R.: Multipoint methods for separable nonlinear networks. In: Korte, B., Ritter, K. (eds.) Mathematical Programming at Oberwolfach II, pp. 185–205. Springer, Berlin (1984)

    Chapter  Google Scholar 

  17. Kao, C., Lee, L.F., Pitt, M.M.: Simulated maximum likelihood estimation of the linear expenditure system with binding non-negativity constraints. Ann. Econ. Finance 2(1), 203–223 (2001)

    Google Scholar 

  18. Keerthi, S.S., Gilbert, E.G.: Convergence of a generalized SMO algorithm for SVM classifier design. Mach. Learn. 46(1–3), 351–360 (2002)

    Article  MATH  Google Scholar 

  19. Lin, C., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: Decomposition algorithm model for singly linearly-constrained problems subject to lower and upper bounds. J. Optim. Theory Appl. 141(1), 107–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, C.J.: Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Trans. Neural Netw. 13, 248–250 (2002)

    Article  Google Scholar 

  21. Lin, C.J.: A formal analysis of stopping criteria of decomposition methods for support vector machines. IEEE Trans. Neural Netw. 13(5), 1045–1052 (2002)

    Article  Google Scholar 

  22. Liu, J., Wright, S., Ré, C., Bittorf, V., Sridhar, S.: An asynchronous parallel stochastic coordinate descent algorithm. J. Mach. Learn. Res. 16, 285–322 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Liuzzi, G., Palagi, L., Piacentini, M.: On the convergence of a Jacobi-type algorithm for singly linearly-constrained problems subject to simple bounds. Optim. Lett. 5(2), 347–362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A convergent decomposition algorithm for support vector machines. Comput. Optim. Appl. 38(2), 217–234 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A convergent hybrid decomposition algorithm model for SVM training. IEEE Trans. Neural Netw. 20(6), 1055–1060 (2009)

    Article  Google Scholar 

  26. Manno, A., Sagratella, S., Livi, L.: A convergent and fully distributable SVMs training algorithm. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3076–3080. IEEE (2016)

  27. Palagi, L., Sciandrone, M.: On the convergence of a modified version of SVM\(^{light}\) algorithm. Optim. Method Softw. 20(2–3), 311–328 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Risi, A.: Convergent decomposition methods for support vector machines. Ph.D. thesis, Sapienza University of Rome (2008)

  29. Scutari, G., Facchinei, F., Lampariello, L., Sardellitti, S., Song, P.: Parallel and distributed methods for constrained nonconvex optimization-part II: applications in communications and machine learning. IEEE Trans. Signal Process. 65(8), 1945–1960 (2017)

    Article  MathSciNet  Google Scholar 

  30. Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated sub-gradient solver for SVM. Math. Program. 127(1), 3–30 (2011). https://doi.org/10.1007/s10107-010-0420-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss minimization. J. Mach. Learn. Res. 14(1), 567–599 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Shalev-Shwartz, S., Zhang, T.: Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. Math. Program. 155(1–2), 105–145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  34. Steinwart, I., Hush, D., Scovel, C.: Training SVMs without offset. J. Mach. Learn. Res. 12, 141–202 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Takác, M., Bijral, A., Richtárik, P., Srebro, N.: Mini-batch primal and dual methods for SVMs. In: 30th International Conference on Machine Learning, pp. 537–552. Springer, Berlin (2013)

  36. Tseng, P., Yun, S.: A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training. Comput. Optim. Appl. 47(2), 179–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, J.: An improved cascade SVM training algorithm with crossed feedbacks. In: First International Multi-Symposiums on Computer and Computational Sciences, 2006. IMSCCS ’06, vol. 2, pp. 735–738 (2006)

  38. Zanghirati, G., Zanni, L.: A parallel solver for large quadratic programs in training support vector machines. Parallel Comput. 29(4), 535–551 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zanni, L., Serafini, T., Zanghirati, G.: Parallel software for training large scale support vector machines on multiprocessor systems. J. Mach. Learn. Res. 7, 1467–1492 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, J.P., Li, Z.W., Yang, J.: A parallel SVM training algorithm on large-scale classification problems. In: Proceedings of 2005 International Conference on Machine Learning and Cybernetics, 2005, vol. 3, pp. 1637–1641 (2005)

Download references

Acknowledgements

The authors thank Prof. Marco Sciandrone (Dipartimento di Ingegneria dell’Informazione, Università di Firenze) for fruitful discussions and suggestions that improved significantly the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Palagi.

Additional information

The work of Laura Palagi was partially supported by the Italian Project PLATINO (Grant Agreement No. PON01_01007); the work of Simone Sagratella was partially supported by the Grant: Avvio alla Ricerca 488, Sapienza University of Rome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manno, A., Palagi, L. & Sagratella, S. Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training. Comput Optim Appl 71, 115–145 (2018). https://doi.org/10.1007/s10589-018-9987-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-9987-0

Keywords

Navigation