Skip to main content
Log in

Robust truss topology optimization via semidefinite programming with complementarity constraints: a difference-of-convex programming approach

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The robust truss topology optimization against the uncertain static external load can be formulated as mixed-integer semidefinite programming. Although a global optimal solution can be computed with a branch-and-bound method, it is very time-consuming. This paper presents an alternative formulation, semidefinite programming with complementarity constraints, and proposes an efficient heuristic. The proposed method is based upon the concave–convex procedure for difference-of-convex programming. It is shown that the method can often find a practically reasonable truss design within the computational cost of solving some dozen of convex optimization subproblems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. A truss is an assemblage of straight bars (called members) connected by pin-joints (called nodes) that do not transfer moment. See Sect. 2 for some concrete examples.

  2. The compliance of a truss, formally defined by (16), is equivalent to the twice strain energy of the truss at the equilibrium state under the prescribed boundary conditions (as far as the prescribed displacements are zeros [35]). It can be regarded as a global measure of the displacements, and hence by minimizing the compliance the global stiffness of the truss is maximized.

  3. The ground structure method is commonly used in truss topology optimization. It prepares an initial setting, called the ground structure, consisting of many members connected by nodes. The cross-sectional areas of the members are treated as design variables, while the locations of the nodes are specified. See Sect. 2 for more account.

  4. With reference to concrete examples, we will thoroughly discuss this issue in Sect. 2.

  5. A solution having a chain cannot be in equilibrium with uncertain loads applied at intermediate nodes of the chain. Therefore, the worst-case compliance of the solution is infinitely large.

  6. The concave–convex procedure is also known as the convex–concave procedure [39, 62].

  7. It should be clear that the worst-case compliance for the solution in Fig. 2c is smaller than that for the solution in Fig. 2a.

  8. In this example, overlapping longer members are not incorporated into the ground structure, because with overlapping members the global optimization method (YALMIP [40]) did not converge within realistic computational time.

  9. In fact, \(-\hat{g}_{i}(\cdot \,; \varvec{x}^{(k)})\) is a majorization function of \(-g_{i}\).

  10. Choice of an initial point in the numerical experiments is explained in Sect. 6

  11. The degrees of freedom of a truss are the possible components of the nodal displacements that define the configuration of the truss.

  12. Problem (17) is convex. Various reformulations are known in literature; see, e.g., Achtziger et al. [2] and Jarre et al. [31]. For example, replacing \(\mathop {\mathrm {diag}}\nolimits (\varvec{s})Q\) in (22) with \(\tilde{\varvec{p}}\), one can readily obtain SDP that minimizes w under constraint \( \begin{bmatrix} w&\tilde{\varvec{p}}^{\top } \\ \tilde{\varvec{p}}&K(\varvec{x}) \\ \end{bmatrix} \succeq 0 \), (17b), and (17c). This formulation was used in the numerical experiments. It should be clear that a ground structure with overlapping members is used for generating the initial point, \(\varvec{x}^{(0)}\).

  13. Ground structures without overlapping members are used to obtain the solutions in Figs. 1b, 3b and  4b.

References

  1. Achtziger, W.: Local stability of trusses in the context of topology optimization. Part I: exact modelling. Struct. Optim. 17, 235–246 (1999)

    Google Scholar 

  2. Achtziger, W., Bendsøe, M.P., Ben-Tal, A., Zowe, J.: Equivalent displacement based formulations for maximum strength truss topology design. Impact Comput. Sci. Eng. 4, 315–345 (1992)

    Article  MathSciNet  Google Scholar 

  3. Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite. Conic and Polynomial Optimization. Springer, New York (2012)

    MATH  Google Scholar 

  4. Beck, A., Ben-Tal, A., Tetruashvili, L.: A sequential parametric convex approximation method with applications to nonconvex truss topology design problems. J. Global Optim. 47, 29–51 (2010)

    Article  MathSciNet  Google Scholar 

  5. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  6. Ben-Tal, A., Jarre, F., Kočvara, M., Nemirovski, A., Zowe, J.: Optimal design of trusses under a nonconvex global buckling constraint. Optim. Eng. 1, 189–213 (2000)

    Article  MathSciNet  Google Scholar 

  7. Ben-Tal, A., Nemirovski, A.: Robust truss topology optimization via semidefinite programming. SIAM J. Optim. 7, 991–1016 (1997)

    Article  MathSciNet  Google Scholar 

  8. Bendsøe, M.P., Ben-Tal, A., Zowe, J.: Optimization methods for truss geometry and topology design. Struct. Optim. 7, 141–159 (1994)

    Article  Google Scholar 

  9. Bendsøe, M.P., Sigmund, O.: Topology Optimization. Springer-Verlag, Berlin (2003)

    MATH  Google Scholar 

  10. Brittain, K., Silva, M., Tortorelli, D.A.: Minmax topology optimization. Struct. Multidiscip. Optim. 45, 657–668 (2012)

    Article  MathSciNet  Google Scholar 

  11. Calafiore, G.C., Dabbene, F.: Optimization under uncertainty with applications to design of truss structures. Struct. Multidiscip. Optim. 35, 189–200 (2008)

    Article  MathSciNet  Google Scholar 

  12. Cherkaev, E., Cherkaev, A.: Principal compliance and robust optimal design. J. Elast. 72, 71–98 (2003)

    Article  MathSciNet  Google Scholar 

  13. Cherkaev, E., Cherkaev, A.: Minimax optimization problem of structural design. Comput. Struct. 86, 1426–1435 (2008)

    Article  Google Scholar 

  14. Collobert, R., Sinz, F., Weston, J., Bottou, L.: Large scale transductive SVMs. J. Mach. Learn. Res. 7, 1687–1712 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  16. de Gournay, F., Allaire, G., Jouve, F.: Shape and topology optimization of the robust compliance via the level set method. ESAIM Control Optim. Calc. Var. 14, 43–70 (2008)

    Article  MathSciNet  Google Scholar 

  17. Figueiredo, M.A.T., Bioucas-Dias, J.M., Nowak, R.D.: Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans. Image Process. 16, 2980–2991 (2007)

    Article  MathSciNet  Google Scholar 

  18. Fung, G., Mangasarian, O.L.: Semi-superyised support vector machines for unlabeled data classification. Optim. Methods Softw. 15, 29–44 (2001)

    Article  Google Scholar 

  19. Gotoh, J., Takeda, A., Tono, K.: DC formulations and algorithms for sparse optimization problems. Math. Program. 169, 141–176 (2018)

    Article  MathSciNet  Google Scholar 

  20. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control (A Tribute to M. Vidyasager), pp. 95–110. Springer, Vidyasagar (2008)

    Chapter  Google Scholar 

  21. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, Version 2.1 (2016 October). http://cvxr.com/cvx

  22. Guo, X., Bai, W., Zhang, W., Gao, X.: Confidence structural robust design and optimization under stiffness and load uncertainties. Comput. Methods Appl. Mech. Eng. 198, 3378–3399 (2009)

    Article  MathSciNet  Google Scholar 

  23. Guo, X., Cheng, G.D., Olhoff, N.: Optimum design of truss topology under buckling constraints. Struct. Multidisc. Optim. 30, 169–180 (2005)

    Article  Google Scholar 

  24. Guo, X., Du, J., Gao, X.: Confidence structural robust optimization by non-linear semidefinite programming-based single-level formulation. Int. J. Numer. Methods Eng. 86, 953–974 (2011)

    Article  MathSciNet  Google Scholar 

  25. Hashimoto, D., Kanno, Y.: A semidefinite programming approach to robust truss topology optimization under uncertainty in locations of nodes. Struct. Multidisc. Optim. 51, 439–461 (2015)

    Article  MathSciNet  Google Scholar 

  26. Holmberg, E., Thore, C.-J., Klarbring, A.: Worst-case topology optimization of self-weight loaded structures using semi-definite programming. Struct. Multidisc. Optim. 52, 915–928 (2015)

    Article  MathSciNet  Google Scholar 

  27. Hunter, D.R., Lange, K.: Quantile regression via an MM algorithm. J. Comput. Graphical Stat. 9, 60–77 (2000)

    MathSciNet  Google Scholar 

  28. Hunter, D.R., Lange, K.: A tutorial on MM algorithms. Am. Stat. 58, 30–37 (2004)

    Article  MathSciNet  Google Scholar 

  29. Hunter, D.R., Li, R.: Variable selection using MM algorithms. Ann. Stat. 33, 1617–1642 (2005)

    Article  MathSciNet  Google Scholar 

  30. Jara-Moroni, F., Pang, J.-S., Wächter, A.: A study of the difference-of-convex approach for solving linear programs with complementarity constraints. Math. Program. 169, 221–254 (2018)

    Article  MathSciNet  Google Scholar 

  31. Jarre, F., Kočvara, M., Zowe, J.: Optimal truss design by interior-point methods. SIAM J. Optim. 8, 1084–1107 (1998)

    Article  MathSciNet  Google Scholar 

  32. Kanno, Y., Guo, X.: A mixed integer programming for robust truss topology optimization with stress constraints. Int. J. Numer. Methods Eng. 83, 1675–1699 (2010)

    Article  MathSciNet  Google Scholar 

  33. Kanno, Y., Takewaki, I.: Sequential semidefinite program for maximum robustness design of structures under load uncertainties. J. Optim. Theory Appl. 130, 265–287 (2006)

    Article  MathSciNet  Google Scholar 

  34. Kanno, Y., Yamada, H.: A note on truss topology optimization under self-weight load: mixed-integer second-order cone programming approach. Struct. Multidisc. Optim. 56, 221–226 (2017)

    Article  MathSciNet  Google Scholar 

  35. Klarbring, A., Strömberg, N.: A note on the min–max formulation of stiffness optimization including non-zero prescribed displacements. Struct. Multidisc. Optim. 12, 147–149 (2012)

    Article  MathSciNet  Google Scholar 

  36. Lange, K., Chi, E.C., Zhou, H.: A brief survey of modern optimization for statisticians. Int. Stat. Rev. 82, 46–70 (2014)

    Article  MathSciNet  Google Scholar 

  37. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)

    Article  MathSciNet  Google Scholar 

  38. Le Thi, H.A., Pham Dinh, T.: On solving linear complementarity problems by DC programming and DCA. Comput. Optim. Appl. 50, 507–524 (2011)

    Article  MathSciNet  Google Scholar 

  39. Lipp, T., Boyd, S.: Variations and extension of the convex–concave procedure. Optim. Eng. 17, 263–287 (2016)

    Article  MathSciNet  Google Scholar 

  40. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Conference on Computer Aided Control System Design, Taipei, pp. 284–289 (2004)

  41. Mela, K.: Resolving issues with member buckling in truss topology optimization using a mixed variable approach. Struct. Multidisc. Optim. 50, 1037–1049 (2014)

    Article  MathSciNet  Google Scholar 

  42. Mitchell, J.E., Pang, J.-S., Yu, B.: Obtaining tighter relaxations of mathematical programs with complementarity constraints. In: Terlaky, T., Curtis, F.E. (eds.) Modeling and Optimization: Theory and Applications, pp. 1–23. Springer, Berlin (2012)

    Google Scholar 

  43. Muu, L.D., Dinh, Q.T., Le Thi, H.A., Tao, P.D.: A new decomposition algorithm for globally solving mathematical programs with affine equilibrium constraints. Acta Math. Vietnam. 37, 201–217 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Neumann, J., Schnörr, C., Steidl, G.: Combined SVM-based feature selection and classification. Mach. Learn. 61, 129–150 (2005)

    Article  Google Scholar 

  45. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to D. C. programming: theory, algorithms and applications. Acta Math. Vietnam. 22, 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  46. Pham Dinh, T., Le Thi, H.A.: Recent advances in DC programming and DCA. In: Nguyen, N.T., Le Thi, H.A. (eds.) Transactions on computational intelligence XIII. Springer-Verlag, Berlin (2014)

    MATH  Google Scholar 

  47. Pham Dinh, T., Le Thi, H.A.: A D.C. optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8, 476–505 (1998)

    Article  MathSciNet  Google Scholar 

  48. Pólik, I.: Addendum to the SeDuMi User Guide: Version 1.1. Technical Report. Advanced Optimization Laboratory, McMaster University, Hamilton (2005). http://sedumi.ie.lehigh.edu/

  49. Rozvany, G.I.N.: Difficulties in truss topology optimization with stress, local buckling and system stability constraints. Struct. Optim. 11, 213–217 (1996)

    Article  Google Scholar 

  50. Sriperumbudur, B.K., Lanckriet, G.R.G.: On the convergence of the concave–convex procedure. Adv. Neural Inf. Process. Syst. 22, 1759–1767 (2009)

    Google Scholar 

  51. Sriperumbudur, B.K., Torres, D.A., Lanckriet, G.R.G.: A majorization-minimization approach to the sparse generalized eigenvalue problem. Mach. Learn. 85, 3–39 (2011)

    Article  MathSciNet  Google Scholar 

  52. Stavroulakis, G.E., Polyakova, L.N.: Nonsmooth and nonconvex structural analysis algorithms based on difference convex optimization techniques. Struct. Optim. 12, 167–176 (1996)

    Article  Google Scholar 

  53. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(12), 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  54. Sun, Y., Babu, P., Palomar, D.P.: Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans. Signal Process. 65, 794–816 (2017)

    Article  MathSciNet  Google Scholar 

  55. Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)

    Article  MathSciNet  Google Scholar 

  56. Svanberg, K.: A class of globally convergent optimization method based on conservative convex separable approximations. SIAM J. Optim. 12, 555–573 (2002)

    Article  MathSciNet  Google Scholar 

  57. Takezawa, A., Nii, S., Kitamura, M., Kogiso, N.: Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. Comput. Methods Appl. Mech. Eng. 200, 2268–2281 (2011)

    Article  MathSciNet  Google Scholar 

  58. Thore, C.-J.: Multiplicity of the maximum eigenvalue in structural optimization problems. Struct. Multidisc. Optim. 53, 961–965 (2016)

    Article  MathSciNet  Google Scholar 

  59. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. B95, 189–217 (2003)

    Article  MathSciNet  Google Scholar 

  60. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook on Semidefinite Programming: Theory. Algorithms and Applications. Kluwer Academic Publishers, Boston (2000)

    MATH  Google Scholar 

  61. Yonekura, K., Kanno, Y.: Global optimization of robust truss topology via mixed integer semidefinite programming. Optim. Eng. 11, 355–379 (2010)

    Article  MathSciNet  Google Scholar 

  62. You, S., Cheny, L., Liu, Y.: Convex–concave procedure for weighted sum-rate maximization in a MIMO interference network. In: 2014 IEEE Global Communications Conference, Austin, pp. 4060–4065 (2014)

  63. Yu, B., Mitchell, J.E., Pang, J.-S.: Solving linear programs with complementarity constraints using branch-and-cut. Technical Report, Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY (2016 October)

  64. Yuille, A., Rangarajan, A.: The concave–convex procedure. Neural Comput 15, 915–936 (2003)

    Article  Google Scholar 

  65. Zillober, C.: Global convergence of a nonlinear programming method using convex approximations. Numer. Algorithms 27, 265–289 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by JSPS KAKENHI 26420545 and 17K06633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kanno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanno, Y. Robust truss topology optimization via semidefinite programming with complementarity constraints: a difference-of-convex programming approach. Comput Optim Appl 71, 403–433 (2018). https://doi.org/10.1007/s10589-018-0013-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0013-3

Keywords

Navigation