Skip to main content
Log in

A Riemannian conjugate gradient method for optimization on the Stiefel manifold

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we propose a new Riemannian conjugate gradient method for optimization on the Stiefel manifold. We introduce two novel vector transports associated with the retraction constructed by the Cayley transform. Both of them satisfy the Ring-Wirth nonexpansive condition, which is fundamental for convergence analysis of Riemannian conjugate gradient methods, and one of them is also isometric. It is known that the Ring-Wirth nonexpansive condition does not hold for traditional vector transports as the differentiated retractions of QR and polar decompositions. Practical formulae of the new vector transports for low-rank matrices are obtained. Dai’s nonmonotone conjugate gradient method is generalized to the Riemannian case and global convergence of the new algorithm is established under standard assumptions. Numerical results on a variety of low-rank test problems demonstrate the effectiveness of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  2. Absil, P.-A., Malick, J.: Projection-like retractions on matrix manifolds. SIAM J. Optim. 22, 135–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balogh, J., Csendes, T., Rapcsák, T.: Some global optimization problems on Stiefel manifolds. J. Glob. Optim. 30, 91–101 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai, Y.: A nonmonotone conjugate gradient algorithm for unconstrained optimization. J. Syst. Sci. Complex. 15, 139–145 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Dai, Y., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs. Reprinted by SIAM Publications (1993)

  8. do Carmo, M.P.: Riemannian geometry. Translated from the second Portuguese edition by Francis Flaherty. Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston (1992)

  9. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  11. Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems, Volume 30 of Oxford Statistical Science Series. Oxford University Press, Oxford (2004)

    Google Scholar 

  12. Grubišić, I., Pietersz, R.: Efficient rank reduction of correlation matrices. Linear Algebra Appl. 422, 629–653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  14. Huang, W.: Optimization algorithms on Riemannian manifolds with applications. Ph.D. thesis, Department of Mathematics, Florida State University (2013)

  15. Huang, W., Absil, P.-A., Gallivan, K.A.: A Riemannian symmetric rank-one trust-region method. Math. Program. 150, 179–216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, W., Absil, P.-A., Gallivan, K.A.: Intrinsic representation of tangent vectors and vector transports on matrix manifolds. Technical Report UCL-INMA-2016.08

  17. Huang, W., Gallivan, K.A., Absil, P.-A.: A Broyden class of quasi-Newton methods for Riemannian optimization. SIAM J. Optim. 25, 1660–1685 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, B., Dai, Y.: A framework of constraint preserving update schemes for optimization on Stiefel manifold. Math. Program. 153, 535–575 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Q., Qi, H.: A sequential semismooth Newton method for the nearest low-rank correlation matrix problem. SIAM J. Optim. 21, 1641–1666 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, X., Wen, Z., Zhang, Y.: Limited memory block Krylov subspace optimization for computing dominant singular value decompositions. SIAM J. Sci. Comput. 35, 1641–1668 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, X., Wen, Z., Wang, X., Ulbrich, M., Yuan, Y.: On the analysis of the discretized Kohn–Sham density functional theory. SIAM J. Numer. Anal. 53, 1758–1785 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ngo, T.T., Bellalij, M., Saad, Y.: The trace ratio optimization problem. SIAM Rev. 54, 545–569 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nishimori, Y., Akaho, S.: Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing 67, 106–135 (2005)

    Article  Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  25. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22, 596–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  27. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, Revised Edition. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  28. Sato, H.: A Dai–Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions. Comput. Optim. Appl. 64, 101–118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sato, H., Iwai, T.: A Riemannian optimization approach to the matrix singular value decompositon. SIAM J. Optim. 23, 188–212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sato, H., Iwai, T.: A new, globally convergent Riemannian conjugate gradient method. Optimization. 64, 1011–1031 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stiefel, E.: Richtungsfelder und fernparallelismus in n-dimensionalen mannigfaltigkeiten. Comment. Math. Helv. 8, 305–353 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  32. Theis, F.J., Cason, T.P., Absil, P.-A.: Soft dimension reduction for ICA by joint diagonalization on the Stiefel manifold. In: Proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation, vol. 5441, pp. 354–361 (2009)

  33. Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123, 85–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wen, Z., Milzarek, A., Ulbrich, M., Zhang, H.: Adaptive regularized self-consistent field iteration with exact Hessian for electronic structure calculations. SIAM J. Sci. Comput. 35, A1299–A1324 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142, 397–434 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wen, Z., Yang, C., Liu, X., Zhang, Y.: Trace-penalty minimization for large-scale eigenspace computation. J. Sci. Comput. 66, 1175–1203 (2016)

    Article  MathSciNet  Google Scholar 

  37. Yuan, Y.: Subspace techniques for nonlinear optimization. In: Jeltsch, R., Li, D.O., Sloan, I.H. (eds.) Some Topics in Industrial and Applied Mathematics (Series in Contemporary Applied Mathematics CAM 8), pp. 206–218. Higher Education Press, Beijing (2007)

    Chapter  Google Scholar 

  38. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14, 1043–1056 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, X., Zhu, J., Wen, Z., Zhou, A.: Gradient type optimization methods for electronic structure calculations. SIAM J. Sci. Comput. 36, C265–C289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, L., Li, R.: Maximization of the sum of the trace ratio on the Stiefel manifold, I: theory. Sci. China Math. 57, 2495–2508 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, L., Li, R.: Maximization of the sum of the trace ratio on the Stiefel manifold, II: computation. Sci. China Math. 58, 1549–1566 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhu, X.: A feasible filter method for the nearest low-rank correlation matrix problem. Numer. Algorithms 69, 763–784 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhu, X., Duan, C.: Gradient methods with approximate exponential retractions for optimization on the Stiefel manifold. Optimization (under review)

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (Nos. 11601317 and 11526135) and University Young Teachers’ Training Scheme of Shanghai (No. ZZsdl15124). The author is very grateful to the coordinating editor and two anonymous referees for their detailed and valuable comments and suggestions which helped improve the quality of this paper. The author would also like to thank Prof. Zaiwen Wen and Prof. Wotao Yin for sharing their MATLAB codes of OptStiefelGBB online.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X. A Riemannian conjugate gradient method for optimization on the Stiefel manifold. Comput Optim Appl 67, 73–110 (2017). https://doi.org/10.1007/s10589-016-9883-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-016-9883-4

Keywords

Mathematics Subject Classification

Navigation