Skip to main content
Log in

Convex Euclidean distance embedding for collaborative position localization with NLOS mitigation

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

One of the challenging problems in collaborative position localization arises when the distance measurements contain non-line-of-sight (NLOS) biases. Convex optimization has played a major role in modelling such problems and numerical algorithm developments. One of the successful examples is the semi-definite programming (SDP), which translates Euclidean distances into the constraints of positive semidefinite matrices, leading to a large number of constraints in the case of NLOS biases. In this paper, we propose a new convex optimization model that is built upon the concept of Euclidean distance matrix (EDM). The resulting EDM optimization has an advantage that its Lagrangian dual problem is well structured and hence is conducive to algorithm developments. We apply a recently proposed 3-block alternating direction method of multipliers to the dual problem and tested the algorithm on some real as well as simulated data of large scale. In particular, the EDM model significantly outperforms the existing SDP model and several others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Let \(x_1,\ldots , x_n\) be independent, identically distributed real random variables. The corresponding empirical distribution function \(F_n(t)\) is defined as \(F_n(t)=\frac{1}{n}\sum _{i=1}^{n}{} \mathbf{1}_{x_i\le t}\), where \(\mathbf{1}_{x_i\le t}\) is the indicator of event \(x_i\le t\).

  2. The data can be downloaded from http://web.eecs.umich.edu/~hero/localize/.

References

  1. Abramo, A., Blanchini, F., Geretti, L., Savorgnan, C.: A mixed convex/nonconvex distributed localization approach for the deployment of indoor positioning services. IEEE Trans. Mobile Comput. 7, 1325–1337 (2008)

    Article  Google Scholar 

  2. Alfakih, A.Y., Khandani, A., Wolkowicz, H.: Solving Euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl. 12, 13–30 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck, A., Stoica, P., Li, J.: Exact and approximate solutions of source localization problems. IEEE Trans. Sign. Process. 56, 1770–1778 (2008)

    Article  MathSciNet  Google Scholar 

  4. Biswas, P., Lian, T.-C., Wang, T.-C., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sensor Netw. (TOSN) 2, 188–220 (2006)

    Article  Google Scholar 

  5. Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, pp. 46–54 (2004)

  6. Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications. Springer Series in Statistics. Springer, New York (2005)

    MATH  Google Scholar 

  7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010)

    Article  MATH  Google Scholar 

  8. Chen, H., Wang, G., Wang, Z., So, H.C., Poor, H.V.: Non-Line-of-Sight node localization based on semi-definite programming in wireless sensor networks. IEEE Trans. Wirel. Commun. 11, 108–116 (2012)

    Article  Google Scholar 

  9. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman and Hall/CRC, Boca Raton (2001)

    MATH  Google Scholar 

  10. Dattorro, J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing, Palo Alto (2005)

    MATH  Google Scholar 

  11. Forero, P.A., Giannakis, G.B.: Sparsity-exploiting robust multidimensional scaling. IEEE Trans. Signal Process. 60, 4118–4134 (2012)

    Article  MathSciNet  Google Scholar 

  12. Gaffke, N., Mathar, R.: A cyclic projection algorithm via duality. Metrika 36, 29–54 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glunt, W., Hayden, T.L., Hong, S., Wells, J.: An alternating projection algorithm for computing the nearest Euclidean distance matrix. SIAM J. Matrix Anal. Appl. 11, 589–600 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glunt, W., Hayden, T.L., Raydan, R.: Molecular conformations from distance matrices. J. Comput. Chem. 14, 114–120 (1993)

    Article  Google Scholar 

  15. Gouveia, J., Pong, T.K.: Comparing SOS and SDP relaxations of sensor network localization. Comput. Optim. Appl. 52, 609–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, Version 2.1, http://cvxr.com/cvx (2015)

  17. Guvenc, I., Chong, C.-C., Watanabe, F., Inamura, H.: NLOS identification and weighted least-squares localization for UWB systems using multipath channel statistics. EURASIP J. Adv. Signal Process. 2008, 271984-1–271984-14 (2008)

    Article  MATH  Google Scholar 

  18. Guvenc, I., Chong, C.-C.: A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Commun. Surv. Tutor. 11, 107–124 (2009)

    Article  Google Scholar 

  19. Hayden, T.L., Wells, J.: Approximation by matrices positive semidefinite on a subspace. Linear Algebra Appl. 109, 115–130 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  22. Jia, T., Buehrer, R.M.: Collaborative position location with NLOS mitigation, Personal. Indoor and Mobile Radio Communications Workshops (PIMRC Workshops), pp. 267–271 (2010)

  23. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Upper Saddle River, NJ (1993)

    MATH  Google Scholar 

  24. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and facial reductions. SIAM J. Optim. 20, 2679–2708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, Z.-S., Zhang, Y.: Penalty decomposition methods for \(l_0\)-norm minimization, Technical Report, http://www.optimization-online.org/DB_FILE/2010/08/2719 (2010)

  26. Nie, J.W.: Sum of squares method for sensor network localization. Comput. Optim. Appl. 43, 151–179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Patwari, N., Hero, A.O., Perkins, M., Correal, N.S., O’Dea, R.J.: Relative location estimation in wireless sensor networks. IEEE Trans. Signal Process. 51, 2137–2148 (2003)

    Article  Google Scholar 

  28. Patwari, N., Ash, J.N., Kyperountas, S., Hero, A.O., Moses, R.L., Correal, N.S.: Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process. Mag. 22, 54–69 (2005)

    Article  Google Scholar 

  29. Pong, T.K.: Edge-based semidefinite programming relaxation of sensor network localization with lower bound constraints. Comput. Optim. Appl. 53, 23–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qi, H.-D.: A semismooth Newton method for the nearest Euclidean distance matrix problem. SIAM J. Matrix Anal. Appl. 34, 67–93 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qi, H.-D., Yuan, X.: Computing the nearest Euclidean distance matrix with low embedding dimensions. Math. Progr. 147, 351–389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Qi, H.-D., Xiu, N.H., Yuan, X.M.: A Lagrangian dual approach to the single source localization problem. IEEE Trans. Signal Process. 61, 3815–3826 (2013)

    Article  MathSciNet  Google Scholar 

  33. Riba, J., Urruela, A.: A non-line-of-sight mitigation technique based on ML-detectionm. ICASSP 2, 153–156 (2004)

    Google Scholar 

  34. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  35. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987)

    Book  MATH  Google Scholar 

  36. Schoenberg, I.J.: Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert”. Ann. Math. (2) 36, 724–732 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stoica, P., Li, J.: Source localization from range-difference measurements. IEEE Signal Process. Mag. 23, 63–69 (2006)

    Article  Google Scholar 

  38. Sun, D., Toh, K.-C., Yang, L.: A convergent proximal alternating direction method of multipliers for conic programming with 4-Block constraints. SIAM J. Optim. 25, 882–915 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Toh, K.-C.: An inexact primal-dual path following algorithm for convex quadratic SDP. Math. Program. 112, 221–254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Toh, K.-C., Todd, M.J., Tütüncü, R.H.: SDPT3 A Matlab software package for semidefinite programming, Version 1.3. Optim. Methods Softw. 11, 545–581 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tseng, P.: Secondorder cone programming relaxation of sensor network localization. SIAM J. Optim. 18, 156–185 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vaghefi, R.M., Buehrer, R.M.: Cooperative sensor localization with NLOS mitigation using semidefinite programming. In: 2012 9th Workshop on Positioning Navigation and Communication (WPNC), pp. 13–18 (2012)

  43. Vaghefi, R.M., Schloemann, J., Buehrer, R.M.: NLOS mitigation in TOA-based localization using semidefinite programming. In: Positioning Navigation and Communication (WPNC), pp. 1–6 (2013)

  44. Venkatesh, S., Buehrer, R.M.: Non-line-of-sight identification in ultra-wideband systems based on received signal statistics. IET Microw. Antennas Propag. 1, 1120–11 (2007)

    Article  Google Scholar 

  45. Venkatesh, S., Buehrer, R.M.: NLOS mitigation using linear programming in ultrawideband location-aware networks. IEEE Trans. Veh. Technol. 56, 3182–3198 (2007)

    Article  Google Scholar 

  46. Wang, G., So, A.M-C., Li, Y.: Robust convex approximation methods for TDOA-based localization under NLOS conditions, Technical report, Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong (2014)

  47. Wang, Z., Zheng, S., Ye, Y., Boyd, S.: Further relaxations of the semidefinite programming approach to sensor network localization. SIAM J. Optim. 19, 655–673 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Young, G., Householder, A.S.: Discussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22 (1938)

    Article  MATH  Google Scholar 

  49. Yousefi, S., Chang, X.-W., Champagne, B.: Distributed cooperative localization in wireless sensor networks without NLOS identification. In: Positioning, Navigation and Communication (WPNC), March 2014, pp. 1–6 (2014)

Download references

Acknowledgments

We would like to thank the two referees for their constructive comments that have helped to improve the quality of the paper. This work is supported in part by Engineering and Physical Science Research Council (UK) Project EP/K007645/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Qi, HD. Convex Euclidean distance embedding for collaborative position localization with NLOS mitigation. Comput Optim Appl 66, 187–218 (2017). https://doi.org/10.1007/s10589-016-9858-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-016-9858-5

Keywords

Navigation