Skip to main content
Log in

Path following in the exact penalty method of convex programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to \(\infty \), one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to (a) projection onto a convex set, (b) nonnegative least squares, (c) quadratically constrained quadratic programming, (d) geometric programming, and (e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  2. Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44, 525–597 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. International Series in Operations Research & Management Science, 3rd edn, p. 116. Springer, New York (2008)

    Google Scholar 

  4. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)

    Google Scholar 

  5. Ruszczyński, A.: Nonlinear Optim. Princeton University Press, Princeton (2006)

    Google Scholar 

  6. Zangwill, W.I.: Non-linear programming via penalty functions. Manag. Sci. 13(5), 344–358 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hestenes, M.R.: Optimization Theory: The Finite Dimensional Case. Wiley-Interscience (Wiley), New York (1975)

  8. Zhou, H., Lange, K.: A path algorithm for constrained estimation. J. Comput. Gr. Stat. 22, 261–283 (2013)

    Article  MathSciNet  Google Scholar 

  9. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Computer Science and Scientific Computing. Academic Press Inc., Boston (1992)

    Google Scholar 

  10. Watson, L.T.: Numerical linear algebra aspects of globally convergent homotopy methods. SIAM Rev. 28(4), 529–545 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Watson, L.T.: Theory of globally convergent probability-one homotopies for nonlinear programming. SIAM J. Optim., 11(3), 761–780, electronic (2000/2001)

  12. Zangwill, W.I., Garcia, C.B.: Pathways to Solutions, Fixed Points, and Equilibria. Prentice-Hall Series in Computational Mathematics. Prentice-Hall, New Jersey (1981)

    Google Scholar 

  13. Zhou, H., Wu, Y.: A generic path algorithm for regularized statistical estimation. J. Am. Statist. Assoc. 109(506), 686–699 (2014)

    Article  Google Scholar 

  14. Bertsekas, D.P.: Convex Analysis and Optimization. Athena Scientific, Belmont. With Angelia Nedić and Asuman E. Ozdaglar (2003)

  15. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004). (with discussion, and a rejoinder by the authors)

    Article  MATH  MathSciNet  Google Scholar 

  16. Osborne, M.R., Presnell, B., Turlach, B.A.: A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20(3), 389–403 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tibshirani, R.J., Taylor, J.: The solution path of the generalized lasso. Ann. Stat. 39(3), 1335–1371 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lange, K.: Optimization. Springer Texts in Statistics. Springer, New York (2004)

    Google Scholar 

  19. Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley Series in Probability and Statistics. Wiley, Chichester (1999)

    Google Scholar 

  20. Lange, K.: Numerical Analysis for Statisticians. Statistics and Computing, 2nd edn. Springer, New York (2010)

  21. Chi, E., Lange, K.: Splitting methods for convex clustering. J. Comput. Gr. Stat. (in press) (2014)

  22. Lawson, C.L., Hanson, R.J.: Solving least squares problems. Classics in Applied Mathematics, Society for Industrial Mathematics, new ed., (1987)

  23. Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 78(384), 837–842 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  24. Deutsch, F.: Best Approximation in Inner Product Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 7. Springer, New York (2001)

    Book  Google Scholar 

  25. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Statist. Data Anal. 52(1), 155–173 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  27. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization, in NIPS, pp. 556–562, MIT Press (2001)

  28. Boyd, S., Kim, S.-J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67–127 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ecker, J.G.: Geometric programming: methods, computations and applications. SIAM Rev. 22(3), 338–362 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  30. Peressini, A.L., Sullivan, F.E., Uhl Jr, J.J.: The Mathematics of Nonlinear Programming. Undergraduate Texts in Mathematics. Springer, New York (1988)

    Book  Google Scholar 

  31. Peterson, E.L.: Geometric programming. SIAM Rev. 18(1), 1–51 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  32. Passy, U., Wilde, D.J.: A geometric programming algorithm for solving chemical equilibrium problems. SIAM J. Appl. Math. 16, 363–373 (1968)

    Article  Google Scholar 

  33. Boyd, S.P., Kim, S.-J., Patil, D.D., Horowitz, M.A.: Digital circuit optimization via geometric programming. Oper. Res. 53, 899–932 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mazumdar, M., Jefferson, T.R.: Maximum likelihood estimates for multinomial probabilities via geometric programming. Biometrika 70(1), 257–261 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Feigin, P.D., Passy, U.: The geometric programming dual to the extinction probability problem in simple branching processes. Ann. Probab. 9(3), 498–503 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lange, K., Zhou, H.: MM algorithms for geometric and signomial programming. Math. Program.Ser. A 143, 339–356 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  39. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis 27, 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  40. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  41. Goldstein, T., Osher, S.: The split Bregman method for \(l_1\)-regularized problems. SIAM J. Img. Sci. 2, 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhou, H., Armagan, A., Dunson, D.: Path following and empirical Bayes model selection for sparse regressions. arXiv:1201.3528 (2012)

  43. Xiao, W., Wu, Y., Zhou, H.: ConvexLAR: an extension of least angle regression. J. Comput. Gr. Stat. Vol. (in press) (2015)

  44. Zhou, H., Lange, K.: On the bumpy road to the dominant mode. Scand. J. Stat. 37(4), 612–631 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Research supported in part by National Science Foundatation Grant DMS-1310319 and National Institutes of Health Grants GM53275, MH59490, HG006139 and GM105785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (png 181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Lange, K. Path following in the exact penalty method of convex programming. Comput Optim Appl 61, 609–634 (2015). https://doi.org/10.1007/s10589-015-9732-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9732-x

Keywords

Mathematics Subject Classification

Navigation