Skip to main content
Log in

An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider optimization problems with an objective function that is the sum of two convex terms: one is smooth and given by a black-box oracle, and the other is general but with a simple, known structure. We first present an accelerated proximal gradient (APG) method for problems where the smooth part of the objective function is also strongly convex. This method incorporates an efficient line-search procedure, and achieves the optimal iteration complexity for such composite optimization problems. In case the strong convexity parameter is unknown, we also develop an adaptive scheme that can automatically estimate it on the fly, at the cost of a slightly worse iteration complexity. Then we focus on the special case of solving the \(\ell _1\)-regularized least-squares problem in the high-dimensional setting. In such a context, the smooth part of the objective (least-squares) is not strongly convex over the entire domain. Nevertheless, we can exploit its restricted strong convexity over sparse vectors using the adaptive APG method combined with a homotopy continuation scheme. We show that such a combination leads to a global geometric rate of convergence, and the overall iteration complexity has a weaker dependency on the restricted condition number than previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agarwal, A., Negahban, S.N., Wainwright, M.J.: Fast global convergence of gradient methods for high-dimensional statistical recovery. Ann. Stat. 40(5), 2452–2482 (2012)

    Article  MATH  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-threshold algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MATH  Google Scholar 

  3. Bredies, K., Lorenz, D.A.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14, 813–837 (2008)

    Article  MATH  Google Scholar 

  4. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MATH  Google Scholar 

  5. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005)

    Article  MATH  Google Scholar 

  6. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006)

    Article  MATH  Google Scholar 

  7. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  8. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  Google Scholar 

  9. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MATH  Google Scholar 

  10. Gonzaga, C.C., Karas, E.W.: Fine tuning Nesterov’s steepest descent algorithm for differentiable convex programming. Math. Program. Ser. A 138, 141–166 (2013)

    Article  MATH  Google Scholar 

  11. Gu, M., Lim, L.-H., Wu, C.J.: ParNes: a rapidly convergent algorithm for accurate recovery of sparse and approximately sparse signals. Numer. Algorithms 64, 321–347 (2013)

    Article  MATH  Google Scholar 

  12. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for \(\ell _1\)-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)

    Article  MATH  Google Scholar 

  13. Li, S., Mo, Q.: New bounds on the restricted isometry constant \(\delta _{2k}\). Appl. Comput. Harmon. Anal. 31(3), 460–468 (2011)

    Article  MATH  Google Scholar 

  14. Luo, Z.-Q., Tseng, P.: On the linear convergence of descent methods for convex essentially smooth minimization. SIAM J. Control Optim. 30(2), 408–425 (1992)

    Article  MATH  Google Scholar 

  15. Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: An adaptive accelerated first-order method for convex optimization. Technical report, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA (2012)

  16. Nemirovski, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley, New York (1983)

    Google Scholar 

  17. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston (2004)

    Book  Google Scholar 

  18. Nesterov, Y.: Smooth minimization of nonsmooth functions. Math. Program. 103(1), 127–152 (2005)

    Article  MATH  Google Scholar 

  19. Nesterov, Y.: How to advance in structural convex optimization. OPTIMA: Math. Program. Soc. Newsl. 78, 2–5 (2008)

    Google Scholar 

  20. Nesterov, Y.: Gradient methods for minimizing composite objective function. Math. Program. Ser. B 140(2007/76), 125–161 (2013)

    Article  MATH  Google Scholar 

  21. Nesterov, Y., Nemirovski, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  22. O’Donoghue, B., Candès, E.J.: Adaptive restart for accelerated gradient schemes. Found. Comput. Math. (2013). doi:10.1007/s10208-013-9150-3

  23. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  24. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R Stat. Soc. Ser. B 58, 267–288 (1996)

    MATH  Google Scholar 

  25. Tseng, P.: On accelerated proximal gradient methods for convex–concave optimization. Manuscript (2008)

  26. Wright, S.J., Nowad, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  Google Scholar 

  27. Wright, S.J.: Accelerated block-coordinate relaxation for regularized optimization. SIAM J. Optim. 22(1), 159–186 (2012)

    Article  MATH  Google Scholar 

  28. Wen, Z., Yin, W., Goldfarb, D., Zhang, Y.: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation. SIAM J. Sci. Comput. 32(4), 1832–1857 (2010)

    Article  MATH  Google Scholar 

  29. Xiao, L., Zhang, T.: A proximal-gradient homotopy method for the sparse least-squares problem. SIAM J. Optim. 23, 1062–1091 (2013)

    Article  MATH  Google Scholar 

  30. Zhang, C.-H., Huang, J.: The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann. Stat. 36, 1567–1594 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We thank Professor Tong Zhang for helpful discussions on the APG homotopy method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihang Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Xiao, L. An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization. Comput Optim Appl 60, 633–674 (2015). https://doi.org/10.1007/s10589-014-9694-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9694-4

Keywords

Navigation