Skip to main content
Log in

Learning features while learning to classify: a cognitive model for autonomous systems

  • S.I. : SBP-BRIMS2017
  • Published:
Computational and Mathematical Organization Theory Aims and scope Submit manuscript

Abstract

We describe a computational cognitive model intended to be a generalizable classifier that can provide context-based feedback to semantic perception in robotic applications. Many classifiers (including cognitive models of categorization) perform well at the task of associating features with objects. Underlying their performance is an effective selection of the features used during classification. This feature selection (FS) process is usually performed outside the boundaries of the models that learn and perform classification tasks, often by human experts. In contrast, the cognitive model we describe simultaneously learns which features to use, as it learns the associations between features and classes. This integration of FS and class learning in one model makes it complementary to other machine-learning techniques that generate feature-based representations (e.g., deep learning methods). But their integration in a cognitive architecture also provides a means for creating a dynamic context that includes disparate sources of information (e.g., environmental observations, task knowledge, commands from humans). This richer context, in turn, provides a means for making semantic perception goal-directed. We demonstrate automated FS, integrated with an instance-based learning approach to classification, in an ACT-R model of categorization by labeling facial expressions of emotion (e.g., happy, sad), and then generalizing the model to the classification of indoor public spaces (e.g., cafes, classrooms).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. After disappointing results from initial runs of the Canonical model, we began initializing DM with prototypes for each emotion. The 7 class prototypes are represented as 7 configuration chunks with slots for each of the 39 features filled with the modal value of each AU for each emotion, plus the emotion class slot and its value. Thus the Canonical model performs poorly even though DM was seeded with standard prototypes. All refinements also were based on models that included seeding DM with standard prototypes.

  2. The generation of SHOG links and node attributes are unresolved issues in our SHOG development efforts. The use of hard thresholds to generate links, raw positioning data as attributes and a superordinate room node is only a proof of concept. This makes interpretations of network metrics tentative at best.

  3. Filter approaches to FS pre-process data independent of classification learning algorithms to reduce dimensionality. Wrapper approaches include the learning algorithms as part of the evaluation in the search for feature subsets. A variety of intuitive notions of relevance is used to evaluate feature-set goodness in many FS algorithms.

References

  • Anderson JR, Betz J (2001) A hybrid model of categorization. Psychon Bull Rev 8(4):629–647

    Article  Google Scholar 

  • Andreopoulos A, Tsotsos JK (2013) 50 years of object recognition: directions forward. Comput Vis Image Underst 117(8):827–891

    Article  Google Scholar 

  • Bell DA, Wang H (2000) A formalism for relevance and its application in feature subset selection. Mach Learn 41(2):175–195

    Article  Google Scholar 

  • Cohn JF, Ambadar Z, Ekman P (2007) Observer-based measurement of facial expression with the Facial Action Coding System. In: Coan JA, Allen JJB (eds) Series in affective science. Handbook of emotion elicitation and assessment. Oxford University Press, New York, NY, pp 203–221

    Google Scholar 

  • Coradeschi S, Saffiotti A (2003) An introduction to the anchoring problem. Robot Auton Syst 43(2–3):85–96

    Article  Google Scholar 

  • Elfenbein HA, Ambady N (2002) On the universality and cultural specificity of emotion recognition: a meta-analysis. Psychol Bull 128(2):203–235

    Article  Google Scholar 

  • Fields M, Lennon C, Lebiere C, Martin MK (2015) Recognizing scenes by simulating implied social interaction networks. In: Liu H, Kubota N, Zhu X, Dillmann R, Zhou D (eds) 8th international conference on intelligent robotics and applications. Springer, Portsmouth, vol 9246, pp 360–371

  • Glicksohn A, Cohen A (2011) The role of Gestalt grouping principles in visual statistical learning. Atten Percept Psychophys 73(3):708–713

    Article  Google Scholar 

  • Gonzalez C, Lerch JF, Lebiere C (2003) Instance-based learning in dynamic decision making. Cognit Sci 27(4):591–635

    Article  Google Scholar 

  • Greene M, Oliva A (2009a) Recognition of natural scenes from global properties: seeing the forest without representing the trees. Cognit Psychol 58(2):137–176

    Article  Google Scholar 

  • Greene MR, Oliva A (2009b) The briefest of glances: the time course of natural scene understanding. Psychol Sci 20(4):464–472

    Article  Google Scholar 

  • Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using networkX. In: Varoquaux G, Vaught T, Millman J (eds) Proceedings of the 7th python in science conference, Pasadena, CA, USA, pp 11–15

  • Jiang Y, Koppula H, Saxena A (2013) Hallucinated humans as the hidden context for labeling 3D scenes. In: IEEE, pp 2993–3000

  • Kurup U, Lebiere C, Stentz A, Hebert M (2012) Using expectations to drive cognitive behavior. In: AAAI

  • Lamberts K (2000) Information-accumulation theory of speeded categorization. Psychol Rev 107(2):227

    Article  Google Scholar 

  • Lebiere C (1999) The dynamics of cognition: an ACT-R model of cognitive arithmetic. Kognitionswissenschaft 8:5–19

    Article  Google Scholar 

  • Lebiere C, Staszewski J (2010) Expert decision making in landmine detection. In: Proceedings of human factors and ergonomics society conference, San Francisco, CA

  • Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The extended Cohn–Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: Computer vision and pattern recognition workshops (CVPRW), 2010 IEEE computer society conference on, IEEE, pp 94–101

  • Meng X, Wang Z, Wu L (2012) Building global image features for scene recognition. Pattern Recognit 45(1):373–380

    Article  Google Scholar 

  • Nosofsky RM, Palmeri TJ (1997) An exemplar-based random walk model of speeded classification. Psychol Rev 104(2):266

    Article  Google Scholar 

  • Quattoni A, Torralba A (2009) Recognizing indoor scenes. In: IEEE conference on computer vision and pattern recognition

  • Stocco A (2012) Acetylcholine-based entropy in response selection: a model of how striatal interneurons modulate exploration, exploitation, and response variability in decision-making. Front Neurosci 6:18

    Article  Google Scholar 

  • Thomson R, Lebiere C, Anderson JR, Staszewski J (2015) A general instance-based learning framework for studying intuitive decision-making in a cognitive architecture. J Appl Res Mem Cognit 4(3):180–190

    Article  Google Scholar 

  • Vinokurov Y, Lebiere C, Herd S, O’Reilly R (2011) A metacognitive classifier using a hybrid ACT-R/Leabra architecture. In: AAAI Workshops. https://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/view/3935/4300

  • Wagemans J, Feldman J, Gepshtein S, Kimchi R, Pomerantz JR, van der Helm PA, van Leeuwen C (2012) A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. Psychol Bull 138(6):1218–1252

    Article  Google Scholar 

  • Zaki SR, Nosofsky RM, Stanton RD, Cohen AL (2003) Prototype and exemplar accounts of category learning and attentional allocation: a reassessment. J Exp Psychol 29(6):1160–1173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, M., Lebiere, C., Fields, M. et al. Learning features while learning to classify: a cognitive model for autonomous systems. Comput Math Organ Theory 26, 23–54 (2020). https://doi.org/10.1007/s10588-018-9279-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10588-018-9279-3

Keywords

Navigation