Skip to main content
Log in

A short note on L q theory for Stokes problem with a pressure-dependent viscosity

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u, namely, it is represented by a stress tensor T (Du, p):= v(p, |D|2)D which satisfies r-growth condition with r ∈ (1, 2]. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Amrouche, V. Girault: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czech. Math. J. 44 (1994), 109–140.

    MathSciNet  MATH  Google Scholar 

  2. P. W. Bridgman: The Physics of High Pressure. MacMillan, New York, 1931.

    Google Scholar 

  3. M. Bulíček, V. Fišerová: Existence theory for steady flows of fluids with pressure and shear rate dependent viscosity, for low values of the power-law index. Z. Anal. Anwend. 28 (2009), 349–371.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bulíček, P. Kaplický: Incompressible fluids with shear rate and pressure dependent viscosity: regularity of steady planar flows. Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 41–50.

    MathSciNet  MATH  Google Scholar 

  5. M. Bulíček, J. Málek, K. R. Rajagopal: Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling v(p, ·) → +∞ as p → +∞. Czech. Math. J. 59 (2009), 503–528.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. A. Caffarelli, I. Peral: On W 1,p estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51 (1998), 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Diening, F. Ettwein: Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20 (2008), 523–556.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Diening, P. Kaplický: L q theory for a generalized Stokes system. Manuscr. Math. 141 (2013), 333–361.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Diening, M. R˚užička, K. Schumacher: A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math. 35 (2010), 87–114.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Franta, J. Málek, K. R. Rajagopal: On steady flows of fluids with pressure- and shear-dependent viscosities. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 461 (2005), 651–670.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Gazzola, P. Secchi: Some results about stationary Navier-Stokes equations with a pressure-dependent viscosity. Navier-Stokes Equations: Theory and Numerical Methods, Varenna, 1997 (R. Salvi, ed.). Pitman Res. Notes Math. Ser. 388, Longman, Harlow, 1998, pp. 31–37.

    Google Scholar 

  12. E. Giusti: Metodi Diretti Nel Calcolo Delle Variazioni. Unione Matematica Italiana, Bologna, 1994. (In Italian.)

    Google Scholar 

  13. T. Iwaniec: On Lp-integrability in PDE’s and quasiregular mappings for large exponents. Ann. Acad. Sci. Fenn. Ser. A I, Math. 7 (1982), 301–322.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Knauf, S. Frei, T. Richter, R. Rannacher: Towards a complete numerical description of lubricant film dynamics in ball bearings. Comput. Mech. 53 (2014), 239–255.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Lanzendörfer: On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate. Nonlinear Anal., Real World Appl. 10 (2009), 1943–1954.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Lanzendörfer: Numerical Simulations of the Flow in the Journal Bearing. Master’s Thesis. Charles University in Prague, Faculty of Mathematics and Physics, 2003.

    Google Scholar 

  17. M. Lanzendörfer, J. Stebel: On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities. Appl. Math., Praha 56 (2011), 265–285.

    MathSciNet  MATH  Google Scholar 

  18. V. Mácha: Partial regularity of solution to generalized Navier-Stokes problem. Cent. Eur. J. Math. 12 (2014), 1460–1483.

    MathSciNet  MATH  Google Scholar 

  19. V. Mácha, J. Tichý: Higher integrability of solution to generalized Stokes system under perfect slip boundary conditions. J. Math. Fluid Mech. 16 (2014), 823–845.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Málek: Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations. Electron. Trans. Numer. Anal. 31 (2008), 110–125.

    MathSciNet  MATH  Google Scholar 

  21. J. Málek, G. Mingione, J. Stará: Fluids with Pressure Dependent Viscosity, Partial Regularity of Steady Flows. Equadiff 2003. Proc. Int. Conf. Differential Equations (F. Dumortier, et al., eds.). World Sci. Publ., Hackensack, 2005, pp. 380–385.

    Google Scholar 

  22. J. Málek, J. Nečas, K. R. Rajagopal: Global analysis of the flows of fluids with pressure-dependent viscosities. Arch. Ration. Mech. Anal. 165 (2002), 243–269.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Roubíček: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2005.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Mácha.

Additional information

This work was supported by the GA ČR project GA13-00522S in the general framework of RVO: 67985840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mácha, V. A short note on L q theory for Stokes problem with a pressure-dependent viscosity. Czech Math J 66, 317–329 (2016). https://doi.org/10.1007/s10587-016-0258-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-016-0258-x

Keywords

MSC 2010

Navigation