Skip to main content
Log in

Fermat test with Gaussian base and Gaussian pseudoprimes

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

The structure of the group (ℤ/nℤ)* and Fermat’s little theorem are the basis for some of the best-known primality testing algorithms. Many related concepts arise: Euler’s totient function and Carmichael’s lambda function, Fermat pseudoprimes, Carmichael and cyclic numbers, Lehmer’s totient problem, Giuga’s conjecture, etc. In this paper, we present and study analogues to some of the previous concepts arising when we consider the underlying group G n := {a + bi ∈ ℤ[i]/nℤ[i]: a 2 + b 2 ≡ 1 (mod n)}. In particular, we characterize Gaussian Carmichael numbers via a Korselt’s criterion and present their relation with Gaussian cyclic numbers. Finally, we present the relation between Gaussian Carmichael number and 1-Williams numbers for numbers n ≡ 3 (mod 4). There are also no known composite numbers less than 1018 in this family that are both pseudoprime to base 1 + 2i and 2-pseudoprime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Alford, A. Granville, C. Pomerance: There are infinitely many Carmichael numbers. Ann. Math. (2) 139 (1994), 703–722.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Borwein, C. Maitland, M. Skerritt: Computation of an improved lower bound to Giuga’s primality conjecture. Integers (electronic only) 13 (2013), Paper A67, 14 pages.

  3. P. Burcsi, S. Czirbusz, G. Farkas: Computational investigation of Lehmer’s totient problem. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 35 (2011), 43–49.

    MATH  MathSciNet  Google Scholar 

  4. R. D. Carmichael: Note on a new number theory function. Amer. Math. Soc. Bull. (2)16 (1910), 232–238.

    Article  MATH  Google Scholar 

  5. J. T. Cross: The Euler’ -function in the Gaussian integers. Am. Math. Mon. 90 (1983), 518–528.

    Article  MATH  MathSciNet  Google Scholar 

  6. O. Echi: Williams numbers. C. R. Math. Acad. Sci., Soc. R. Can. 29 (2007), 41–47.

    MATH  MathSciNet  Google Scholar 

  7. W. Galway: Tables of pseudoprimes and related data. http://www.cecm.sfu.ca/Pseudoprimes/.

  8. G. Giuga: Su una presumibile proprietà caratteristica dei numeri primi. Ist. Lombardo Sci. Lett., Rend., Cl. Sci. Mat. Natur. (3) 14 (1951), 511–528. (In Italian.)

    MathSciNet  Google Scholar 

  9. J. R. Goldman: Numbers of solutions of congruences: Poincaré series for strongly nondegenerate forms. Proc. Am. Math. Soc. 87 (1983), 586–590.

    MATH  Google Scholar 

  10. G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. Oxford University Press, Oxford, 2008.

    MATH  Google Scholar 

  11. D. H. Lehmer: On Euler’s totient function. Bull. Am. Math. Soc. 38 (1932), 745–751.

    Article  MathSciNet  Google Scholar 

  12. F. Lemmermeyer: Conics-a poor man’s elliptic curves. Preprint at http://www.fen.bilkent.edu.tr/~franz/publ/conics.pdf.arXiv:math/0311306v1[math.NT/~franz/publ/conics.pdf.arXiv:math/0311306v1[math.NT].

  13. R. G. E. Pinch: Absolute quadratic pseudoprimes. Proc. of Conf. on Algorithmic Number Theory. TUCS General Publications 46 (A.-M. Ernvall-Hytönen at al., eds.). 2007, pp. 113–128. http://tucs.fi/publications/view/?id=pErJuKaLe07a&table=proceeding.

  14. C. Pomerance, J. L. Selfridge, S. S. Wagstaff, Jr.: The pseudoprimes to 25 · 109. Math. Comput. 35 (1980), 1003–1026.

    MATH  MathSciNet  Google Scholar 

  15. J. Schettler: Lehmer’s totient problem and Carmichael numbers in a PID. http://math.ucsb.edu/~jcs/Schettler.pdf.

  16. J. H. Silverman: Elliptic Carmichael numbers and elliptic Korselt criteria. Acta Arith. 155 (2012), 233–246.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. J. A. Sloane: The On-Line Encyclopedia of Integer Sequences. http://www.oeis.org.

  18. G. A. Steele: Carmichael numbers in number rings. J. Number Theory 128 (2008), 910–917.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Szele: Über die endlichen Ordnungszahlen zu denen nur eine Gruppe gehört. Comment. Math. Helv. 20 (1947), 265–267. (In German.)

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Tarry, I. Franel, A. R. Korselt, G. Vacca: Problème chinois. L’intermédiaire des mathématiciens 6 (1899), 142–144. www.oeis.org/wiki/File:Problème_chinois.pdf/wiki/File:Problème_chinois.pdf. (In French.)

    Google Scholar 

  21. H. C. Williams: On numbers analogous to the Carmichael numbers. Can. Math. Bull. 20 (1977), 133–143.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Grau.

Additional information

D. Sadornil is partially supported by the Spanish Government under projects MTM2010-21580-C02-02 and MTM2010-16051.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grau, J.M., Oller-Marcén, A.M., Rodríguez, M. et al. Fermat test with Gaussian base and Gaussian pseudoprimes. Czech Math J 65, 969–982 (2015). https://doi.org/10.1007/s10587-015-0221-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-015-0221-2

Keywords

MSC 2010

Navigation