Skip to main content
Log in

Non supercyclic subsets of linear isometries on Banach spaces of analytic functions

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let X be a Banach space of analytic functions on the open unit disk and Γ a subset of linear isometries on X. Sufficient conditions are given for non-supercyclicity of Γ. In particular, we show that the semigroup of linear isometries on the spaces S p (p > 1), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space H p or the Bergman space L p a (1 < p < ∞, p ≠ 2) are not supercyclic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Ansari: Hypercyclic and cyclic vectors. J. Funct. Anal. 128 (1995), 374–383.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Bayart, É. Matheron: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge, 2009.

    Book  MATH  Google Scholar 

  3. J. Becerra Guerrero, A. Rodríguez-Palacios: Transitivity of the norm on Banach spaces. Extr. Math. 17 (2002), 1–58.

    MATH  Google Scholar 

  4. J. Bonet, M. Lindström, E. Wolf: Isometric weighted composition operators on weighted Banach spaces of type H . Proc. Am. Math. Soc. 136 (2008), 4267–4273.

    Article  MATH  Google Scholar 

  5. P. S. Bourdon, N. S. Feldman: Somewhere dense orbits are everywhere dense. Indiana Univ. Math. J. 52 (2003), 811–819.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. A. Conejero, V. Müller, A. Peris: Hypercyclic behaviour of operators in a hypercyclic C 0-semigroup. J. Funct. Anal. 244 (2007), 342–348.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. B. Conway: Functions of One Complex Variable. Graduate Texts in Mathematics 11, Springer, New York, 1978.

    Book  Google Scholar 

  8. E. T. Copson: Asymptotic Expansions. Cambridge Tracts in Mathematics and Mathematical Physics 55, Cambridge University Press, New York, 1965.

    Book  MATH  Google Scholar 

  9. R. J. Fleming, J. E. Jamison: Isometries on Banach Spaces. Vol. 2: Vector-valued Function Spaces. Monographs and Surveys in Pure and Applied Mathematics 138, Chapman and Hall/CRC, Boca Raton, 2007.

    Book  Google Scholar 

  10. R. J. Fleming, J. E. Jamison: Isometries on Banach Spaces. Vol. 1: Function Spaces. Monographs and Surveys in Pure and Applied Mathematics 129, Chapman and Hall/CRC, Boca Raton, 2003.

    Google Scholar 

  11. L.-G. Geng, Z.-H. Zhou, X.-T. Dong: Isometric composition operators on weighted Dirichlet-type spaces. J. Inequal. Appl. (electronic only) 2012 (2012), Article No. 23, 6 pages.

  12. P. Greim, J. E. Jamison, A. Kamińska: Almost transitivity of some function spaces. Math. Proc. Camb. Philos. Soc. 116 (1994), 475–488; corrigendum ibid. 121 (1997), 191.

    Article  MATH  Google Scholar 

  13. W. Hornor, J. E. Jamison: Isometries of some Banach spaces of analytic functions. Integral Equations Oper. Theory 41 (2001), 410–425.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. Jarosz: Any Banach space has an equivalent norm with trivial isometries. Isr. J. Math. 64 (1988), 49–56.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Kitai: Invariant Closed Sets for Linear Operators. ProQuest LLC, Ann Arbor, University of Toronto, Toronto, Canada, 1982.

    Google Scholar 

  16. F. León-Saavedra, V. Müller: Rotations of hypercyclic and supercyclic operators. Integral Equations Oper. Theory 50 (2004), 385–391.

    Article  MATH  Google Scholar 

  17. M. J. Martín, D. Vukotić: Isometries of some classical function spaces among the composition operators. Recent Advances in Operator-Related Function Theory (A. L. Matheson et al., eds.). Proc. Conf., Dublin, Ireland, 2004, Contemp. Math. 393, American Mathematical Society, Providence, 2006, pp. 133–138.

    Google Scholar 

  18. W. P. Novinger, D. M. Oberlin: Linear isometries of some normed spaces of analytic functions. Can. J. Math. 37 (1985), 62–74.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Rolewicz: On orbits of elements. Stud. Math. 32 (1969), 17–22.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Moradi.

Additional information

This research was in part supported by a grant from Shiraz University Research Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A., Hedayatian, K., Robati, B.K. et al. Non supercyclic subsets of linear isometries on Banach spaces of analytic functions. Czech Math J 65, 389–397 (2015). https://doi.org/10.1007/s10587-015-0184-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-015-0184-3

Keywords

MSC 2010

Navigation