Skip to main content
Log in

A binary hybrid sine cosine white shark optimizer for feature selection

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Feature Selection (FS), a pre-processing step used in the majority of big data processing applications, aims to eliminate irrelevant and redundant features from the data. Its purpose is to select a final set of data characteristics that best represent the data as a whole. To achieve this, it explores every potential solution in order to identify the optimal subset. Meta-heuristic algorithms have been found to be particularly effective in solving FS problems, especially for high-dimensional datasets. This work adopts a recently developed meta-heuristic called the White Shark Optimizer (WSO) due to its simplicity and low computational overhead. However, WSO faces challenges in effectively balancing exploration and exploitation, particularly in complex multi-peak search problems. It tends to converge prematurely and get stuck in local optima, which can lead to poor search performance when dealing with FS problems. To overcome these issues, this paper presents three enhanced binary variants of WSO for well-known FS problems. These variants are as follows: (1) Binary Distribution-based WSO (BDWSO), where the algorithm refines the positions of white sharks by considering both the average and standard deviation of the current shark, the local best shark, and the global best shark. This strategy is designed to alleviate issues of premature convergence and stagnation during iterations , (2) Binary Sine Cosine WSO (BSCWSO), which uses sine and cosine adaptive functions for the social and cognitive components of the position update rule, and (3) Binary Hybrid Sine Cosine WSO (BHSCWSO), which employs sine and cosine acceleration factors to regulate local search and achieve convergence to the global optimal solution. Additionally, the population was initialized using the Opposition-Based Learning (OBL) mechanism, and the sine map was used to modify the inertia weight of WSO. These revised variants of WSO were established to have a better harmony between the exploration and exploitation facets. The proposed methods were extensively compared to the fundamental binary WSO and other well-known algorithms in the field. The experimental findings and comparisons demonstrate that the proposed methods outperform the conventional and most evaluated similar algorithms in terms of robustness and solution quality. In terms of classification accuracy, number of selected features, specificity, sensitivity, and fitness values, the proposed BHSCWSO optimizer performed better than all other proposed peer optimizers, including BSWO, BDWSO, and BSCWSO, in 11, 8, 13, 18, and 10 datasets, respectively. The proposed BHSCWSO optimizer showed performance levels of more than 90% in terms of accuracy, sensitivity, and specificity metric measures on 15, 14, and 11 of the 24 datasets deemed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data available on request from the author.

References

  1. Braik, M.: Enhanced ali baba and the forty thieves algorithm for feature selection. Neural Comput. Appl. 35(8), 1–32 (2022)

    Google Scholar 

  2. Braik, M., Sheta, A., Al-Hiary, H., Aljahdali, S.: Enhanced cuckoo search algorithm for industrial winding process modeling. J. Intell. Manuf. 34(4), 1911–1940 (2023)

    Article  Google Scholar 

  3. Braik, M.: Hybrid enhanced whale optimization algorithm for contrast and detail enhancement of color images. Cluster Comput. 27, 231–267 (2022)

    Article  Google Scholar 

  4. Braik, M.S.: Modified chameleon swarm algorithm for brightness and contrast enhancement of satellite images. Multimed. Tools Appl. 83, 26819–26870 (2023)

    Article  Google Scholar 

  5. Abiodun, E.O., Alabdulatif, A., Abiodun, O.I., Alawida, M., Alabdulatif, A., Alkhawaldeh, R.S.: A systematic review of emerging feature selection optimization methods for optimal text classification: the present state and prospective opportunities. Neural Comput. Appl. 33(22), 15091–15118 (2021)

    Article  Google Scholar 

  6. Albashish, D., Hammouri, A.I., Braik, M., Atwan, J., Sahran, S.: Binary biogeography-based optimization based svm-rfe for feature selection. Appl. Soft Comput. 101, 107026 (2021)

    Article  Google Scholar 

  7. Braik, M.S., Hammouri, A.I., Awadallah, M.A., Al-Betar, M.A., Khtatneh, K.: An improved hybrid chameleon swarm algorithm for feature selection in medical diagnosis. Biomed. Signal Process. Control 85, 105073 (2023)

    Article  Google Scholar 

  8. Awadallah, M.A., Hammouri, A.I., Al-Betar, M.A., Braik, M.S., AbdElaziz, M.: Binary horse herd optimization algorithm with crossover operators for feature selection. Comput. Biol. Med. 141, 105152 (2022)

    Article  Google Scholar 

  9. Braik, M., Awadallah, M.A., Al-Betar, M.A., Hammouri, A.I., Alzubi, O.A.: Cognitively enhanced versions of capuchin search algorithm for feature selection in medical diagnosis: a covid-19 case study. Cogn. Comput. 15(6), 1884–1921 (2023)

    Article  Google Scholar 

  10. Sarkar, J.P., Saha, I., Sarkar, A., Maulik, U.: Machine learning integrated ensemble of feature selection methods followed by survival analysis for predicting breast cancer subtype specific mirna biomarkers. Comput. Biol. Med. 131, 104244 (2021)

    Article  Google Scholar 

  11. Qtaish, A., Albashish, D., Braik, M., Alshammari, M.T., Alreshidi, A., Alreshidi, E.J.: Memory-based sand cat swarm optimization for feature selection in medical diagnosis. Electronics 12(9), 2042 (2023)

    Article  Google Scholar 

  12. Ebrahimi-Khusfi, Z., Nafarzadegan, A.R., Dargahian, F.: Predicting the number of dusty days around the desert wetlands in southeastern Iran using feature selection and machine learning techniques. Ecol. Ind. 125, 107499 (2021)

    Article  Google Scholar 

  13. Braik, M., Hammouri, A., Alzoubi, H., Sheta, A.: Feature selection based nature inspired capuchin search algorithm for solving classification problems. Expert Syst. Appl. 235, 121128 (2024)

    Article  Google Scholar 

  14. Batool, I., Khan, T.A.: Software fault prediction using data mining, machine learning and deep learning techniques: A systematic literature review. Comput. Electr. Eng. 100, 107886 (2022)

    Article  Google Scholar 

  15. Al-Tashi, Q., Rais, H. Md, Abdulkadir, S.J., Mirjalili, S., Alhussian, H.: A review of grey wolf optimizer-based feature selection methods for classification. In: Evolutionary Machine Learning Techniques, pp. 273–286. Springer, (2020)

  16. Alelyani, S., Tang, J., Liu, H.: Feature selection for clustering: A review. In: Data Clustering: Algorithms and Applications, pp. 29–60 (2018)

  17. Alhenawi, E., Al-Sayyed, R., Hudaib, A., Mirjalili, S.: Feature selection methods on gene expression microarray data for cancer classification: A systematic review. Comput. Biol. Med. 140, 105051 (2022)

    Article  Google Scholar 

  18. Abualigah, L., Diabat, A.: Chaotic binary group search optimizer for feature selection. Expert Syst. Appl. 192, 116368 (2022)

    Article  Google Scholar 

  19. Yanyu, H., Zhao, L., Li, Z., Dong, X., Tiantian, X., Zhao, Y.: Classifying the multi-omics data of gastric cancer using a deep feature selection method. Expert Syst. Appl. 200, 116813 (2022)

    Article  Google Scholar 

  20. Braik, M., Hammouri, A., Atwan, J., Al-Betar, M.A., Awadallah, M.A.: White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 243, 108457 (2022)

    Article  Google Scholar 

  21. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  22. Doğan, B., Ölmez, T.: A new metaheuristic for numerical function optimization: Vortex search algorithm. Inf. Sci. 293, 125–145 (2015)

    Article  Google Scholar 

  23. Jia, H., Li, J., Song, W., Peng, X., Lang, C., Li, Y.: Spotted hyena optimization algorithm with simulated annealing for feature selection. IEEE Access 7, 71943–71962 (2019)

    Article  Google Scholar 

  24. Neggaz, N., Ewees, A.A., Abd Elaziz, M., Mafarja, M.: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection. Expert Syst. Appl. 145, 113103 (2020)

    Article  Google Scholar 

  25. Sayed, G.I., Tharwat, A., Hassanien, A.E.: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Applied Intelligence 49(1), 188–205 (2019)

    Article  Google Scholar 

  26. Anand, P., Arora, S.: A novel chaotic selfish herd optimizer for global optimization and feature selection. Artif. Intell. Rev. 53(2), 1441–1486 (2020)

    Article  Google Scholar 

  27. Awadallah, M.A., Al-Betar, M.A., Braik, M.S., Hammouri, A.I., Doush, I.A., Zitar, R.A.: An enhanced binary rat swarm optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection. Compute. Biol. Med., p. 105675, (2022)

  28. Pashaei, E., Pashaei, E.: An efficient binary chimp optimization algorithm for feature selection in biomedical data classification. Neural Comput. Appl. 34(8), 6427–6451 (2022)

    Article  Google Scholar 

  29. Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary ant lion approaches for feature selection. Neurocomputing 213, 54–65 (2016)

    Article  Google Scholar 

  30. Zhang, Y., Song, X., Gong, D.: A return-cost-based binary firefly algorithm for feature selection. Inf. Sci. 418, 561–574 (2017)

    Article  Google Scholar 

  31. Faris, H., Mafarja, M.M., Heidari, A.A., Aljarah, I., Ala’M, A.-Z., Mirjalili, S., Fujita, H.: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl.-Based Syst. 154, 43–67 (2018)

    Article  Google Scholar 

  32. Nadimi-Shahraki, M.H., Asghari Varzaneh, Z., Zamani, H., Mirjalili, S.: Binary starling murmuration optimizer algorithm to select effective features from medical data. Appl. Sci. 13(1), 564 (2022)

    Article  Google Scholar 

  33. Nadimi-Shahraki, M.H., Fatahi, A., Zamani, H., Mirjalili, S.: Binary approaches of quantum-based avian navigation optimizer to select effective features from high-dimensional medical data. Mathematics 10(15), 2770 (2022)

    Article  Google Scholar 

  34. Fatahi, A., Nadimi-Shahraki, M.H., Zamani, H.: An improved binary quantum-based avian navigation optimizer algorithm to select effective feature subset from medical data: A covid-19 case study. J. Bionic Eng. 21(1), 426–446 (2023)

  35. Nadimi-Shahraki, M.H., Zamani, H., Mirjalili, S.: Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study. Comput. Biol. Med. 148, 105858 (2022)

    Article  Google Scholar 

  36. Arora, S., Anand, P.: Binary butterfly optimization approaches for feature selection. Expert Syst. Appl. 116, 147–160 (2019)

    Article  Google Scholar 

  37. Song, X.-F., Zhang, Y., Gong, D.-W., Gao, X.-Z.: A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data. IEEE Trans. Cybern. 52(9), 9573–9586 (2021)

  38. Zăvoianu, A.-C., Lughofer, E., Koppelstätter, W., Weidenholzer, G., Amrhein, W., Klement, E.P.: Performance comparison of generational and steady-state asynchronous multi-objective evolutionary algorithms for computationally-intensive problems. Knowl.-Based Syst. 87, 47–60 (2015)

    Article  Google Scholar 

  39. Kashef, S., Nezamabadi-pour, H.: An advanced ACO algorithm for feature subset selection. Neurocomputing 147, 271–279 (2015)

    Article  Google Scholar 

  40. Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and selection in classification on high-dimensional data. Memetic Comput. 8(1), 3–15 (2016)

    Article  Google Scholar 

  41. Zhang, Y., Gong, D., Gao, X., Tian, T., Sun, X.: Binary differential evolution with self-learning for multi-objective feature selection. Inf. Sci. 507, 67–85 (2020)

    Article  MathSciNet  Google Scholar 

  42. Awadallah, M.A., Al-Betar, M.A., Hammouri, A.I., Alomari, O.A.: Binary Jaya algorithm with adaptive mutation for feature selection. Arabian J. Sci. Eng. 45(12), 10875–10890 (2020)

    Article  Google Scholar 

  43. Cheng, F., Chu, Feixiang, X., Yi, Z., Lei: A steering-matrix-based multiobjective evolutionary algorithm for high-dimensional feature selection. IEEE Trans. Cybern. 52(9), 9695–9708 (2021)

  44. Kirkpatrick, S., Daniel Gelatt, C., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  45. Meiri, R., Zahavi, J.: Using simulated annealing to optimize the feature selection problem in marketing applications. Eur. J. Oper. Res. 171(3), 842–858 (2006)

    Article  Google Scholar 

  46. Jeong, I.-S., Kim, H.-K., Kim, T.-H., Lee, D.H., Kim, K.J., Kang, S.-H.: A feature selection approach based on simulated annealing for detecting various denial of service attacks. Softw. Netw. 2018(1), 173–190 (2018)

    Google Scholar 

  47. Yan, C., Ma, J., Luo, H., Patel, A.: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets. Chemometr. Intell. Lab. Syst. 184, 102–111 (2019)

    Article  Google Scholar 

  48. Gharehchopogh, F.S., Maleki, I., Dizaji, Z.A.: Chaotic vortex search algorithm: metaheuristic algorithm for feature selection. Evolut. Intell. 15(3), 1777–1808 (2021)

  49. Elgamal, Z.M., Binti Mohd Yasin, N., Tubishat, M., Alswaitti, M., Mirjalili, S.: An improved Harris hawks optimization algorithm with simulated annealing for feature selection in the medical field. IEEE Access 8, 186638–186652 (2020)

    Article  Google Scholar 

  50. Elmanakhly, D.A., Saleh, M.M., Rashed, E.A.: An improved equilibrium optimizer algorithm for features selection: Methods and analysis. IEEE Access 9, 120309–120327 (2021)

    Article  Google Scholar 

  51. Mafarja, M.M., Mirjalili, S.: Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260, 302–312 (2017)

    Article  Google Scholar 

  52. Chantar, H., Tubishat, M., Essgaer, M., Mirjalili, S.: Hybrid binary dragonfly algorithm with simulated annealing for feature selection. SN Comput. Sci. 2(4), 1–11 (2021)

    Article  Google Scholar 

  53. Abdel-Basset, M., Ding, W., El-Shahat, D.: A hybrid Harris hawks optimization algorithm with simulated annealing for feature selection. Artif. Intell. Rev. 54(1), 593–637 (2021)

    Article  Google Scholar 

  54. Agrawal, P., Ganesh, T., Mohamed, A.W.: Chaotic gaining sharing knowledge-based optimization algorithm: an improved metaheuristic algorithm for feature selection. Soft. Comput. 25(14), 9505–9528 (2021)

    Article  Google Scholar 

  55. Agrawal, P., Ganesh, T., Mohamed, A.W.: A novel binary gaining-sharing knowledge-based optimization algorithm for feature selection. Neural Comput. Appl. 33(11), 5989–6008 (2021)

    Article  Google Scholar 

  56. Agrawal, P., Ganesh, T., Oliva, D., Mohamed, A.W.: S-shaped and v-shaped gaining-sharing knowledge-based algorithm for feature selection. Appl. Intell. 52(1), 81–112 (2022)

    Article  Google Scholar 

  57. Hancer, E.: Differential evolution for feature selection: A fuzzy wrapper-filter approach. Soft. Comput. 23(13), 5233–5248 (2019)

    Article  Google Scholar 

  58. Jiang, Y., Liu, X., Yan, G., Xiao, J.: Modified binary cuckoo search for feature selection: a hybrid filter-wrapper approach. In: 2017 13th International Conference on Computational Intelligence and Security (CIS), pp. 488–491. IEEE, (2017)

  59. Lai, C.-M., Yeh, W.-C., Chang, C.-Y.: Gene selection using information gain and improved simplified swarm optimization. Neurocomputing 218, 331–338 (2016)

    Article  Google Scholar 

  60. Lu, H., Chen, J., Yan, K., Jin, Q., Xue, Y., Gao, Z.: A hybrid feature selection algorithm for gene expression data classification. Neurocomputing 256, 56–62 (2017)

    Article  Google Scholar 

  61. Kiran, M.S.: Particle swarm optimization with a new update mechanism. Appl. Soft Comput. 60, 670–678 (2017)

    Article  Google Scholar 

  62. Zhang, X., Zou, D., Shen, X.: A novel simple particle swarm optimization algorithm for global optimization. Mathematics 6(12), 287 (2018)

    Article  Google Scholar 

  63. Ahandani, M.A.: Opposition-based learning in the shuffled bidirectional differential evolution algorithm. Swarm Evolut. Comput. 26, 64–85 (2016)

    Article  Google Scholar 

  64. Tubishat, M., Idris, N., Shuib, L., Abushariah, M.A.M., Mirjalili, S.: Improved Salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst. Appl. 145, 113122 (2020)

    Article  Google Scholar 

  65. Niu, P., Chen, K., Ma, Y., Li, X., Liu, A., Li, G.: Model turbine heat rate by fast learning network with tuning based on ameliorated krill herd algorithm. Knowl.-Based Syst. 118, 80–92 (2017)

    Article  Google Scholar 

  66. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  67. Braik, M., Ryalat, M.H., Al-Zoubi, H.: A novel meta-heuristic algorithm for solving numerical optimization problems: Ali baba and the forty thieves. Neural Comput. Appl. 34(1), 409–455 (2022)

    Article  Google Scholar 

  68. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Vol. 5, pp. 4104–4108. IEEE, (1997)

  69. Mirjalili, S., Lewis, A.: S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evolut. Comput. 9, 1–14 (2013)

    Article  Google Scholar 

  70. Mirjalili, S., Zhang, H., Mirjalili, S., Chalup, S., Noman, N.: A novel u-shaped transfer function for binary particle swarm optimisation. In: Soft Computing for Problem Solving 2019: Proceedings of SocProS 2019, Vol. 1, pp. 241–259. Springer, (2020)

  71. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Bgsa: binary gravitational search algorithm. Nat. Comput. 9, 727–745 (2010)

    Article  MathSciNet  Google Scholar 

  72. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    Article  MathSciNet  Google Scholar 

  73. Lichman, M.: Uci machine learning repository [https://archive.ics.uci.edu/ml/datasets.html]. irvine, ca: University of California, School of Information and Computer Science, (2016)

  74. Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Anand, A., Liu, H.: Advancing feature selection research. ASU feature selection repository, pp. 1–28, (2010)

  75. Iwendi, C., Bashir, A.K., Peshkar, A., Sujatha, R., Chatterjee, J.M., Pasupuleti, S., Mishra, R., Pillai, S., Jo, O.: Covid-19 patient health prediction using boosted random forest algorithm. Front. Public Health 8, 357 (2020)

    Article  Google Scholar 

  76. Hashim, F.A., Hussien, A.G.: Snake optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 242, 108320 (2022)

    Article  Google Scholar 

  77. Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., Al-Atabany, W.: Honey badger algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 192, 84–110 (2022)

    Article  MathSciNet  Google Scholar 

  78. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

    Article  Google Scholar 

  79. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, pp. 1942–1948. IEEE, (1995)

  80. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  81. Rao, V., Savsani, R., Vimal, J., Vakharia, D.P.: Teaching-learning-based optimization: An optimization method for continuous non-linear large scale problems. Inform. Sci. 183(1), 1–15 (2012)

    Article  MathSciNet  Google Scholar 

  82. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  83. Viktorin, A., Pluhacek, M., Senkerik, R.: Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on cec2014 benchmark set. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4797–4803. IEEE, (2016)

  84. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  85. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  Google Scholar 

  86. Pereira, D.G., Afonso, A., Medeiros, F.M.: Overview of Friedman’s test and post-hoc analysis. Commun. Stat. Simul. Comput. 44(10), 2636–2653 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research reported in this publication was supported by the Deanship of Scientific Research and Innovation at Al-Balqa Applied University in Jordan.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz I. Hammouri.

Ethics declarations

Conflict of interest

The author declare no Conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammouri, A.I., Braik, M.S., Al-hiary, H.H. et al. A binary hybrid sine cosine white shark optimizer for feature selection. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04361-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04361-2

Keywords

Navigation