Skip to main content
Log in

A new energy-aware technique to improve the network lifetime of wireless Internet of Things using a most valuable player algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the fast evolution of Internet of Things (IoT) applications, Wireless Sensor Networks (WSNs) have become a crucial part of modern infrastructure. The efficient provision of services and wiser use of resources are currently of great importance. WSNs consist of several sensor nodes that collaborate to monitor and send data to a central location known as a sink. The sink, also called a base station, serves as the endpoint for data transmission in each round. However, due to the limited computation, storage, and energy resources of sensor nodes, they often face challenges in changing clusters. Optimal selection of a node, aimed at minimizing network fragmentation and enhancing energy utilization, necessitates a sophisticated evaluation and computational procedure, demanding a substantial energy investment. Subsequently, the task at hand is the development of a system facilitating the connection of remote sensing sources to WSNs with minimal energy consumption. The primary goals of WSNs based on the IoT revolve around extending network longevity and enhancing energy efficiency. In the realm of IoT-based WSNs, where the efficiency of data collection and management is paramount, cluster-based methodologies have demonstrated their effectiveness. This investigation proposes the implementation of a most valuable player algorithm (MVPA) specifically tailored for IoT-based WSNs, taking into account diverse factors influencing node energy and network lifespan. The MVPA is a highly competitive optimization method that converges faster (with fewer function evaluations) and has a greater overall success rate. In this case, the optimum cluster head for an IoT-based WSN was chosen using an MVPA to maximize energy savings. Simulation results demonstrate that the recommended strategy, when compared to other current methods, increases the network lifetime by using the minimum amount of energy needed to function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data are reported.

References

  1. Li, T., et al.: To what extent we repeat ourselves? Discovering daily activity patterns across mobile app usage. IEEE Trans. Mob. Comput. 21(4), 1492–1507 (2020)

    Article  MathSciNet  Google Scholar 

  2. Sadrishojaei, M., et al.: A new clustering-based routing method in the mobile internet of things using a krill herd algorithm. Clust. Comput. (2022). https://doi.org/10.1007/s10586-021-03394-1

    Article  Google Scholar 

  3. Huang, J., Tong, Z., Feng, Z.: Geographical POI recommendation for Internet of Things: a federated learning approach using matrix factorization. Int. J. Commun. Syst. (2022). https://doi.org/10.1002/dac.5161

    Article  Google Scholar 

  4. Cheng, B., et al.: Situation-aware IoT service coordination using the event-driven SOA paradigm. IEEE Trans. Netw. Serv. Manag. 13(2), 349–361 (2016)

    Article  Google Scholar 

  5. Lv, Z., et al.: Cross-layer optimization for industrial Internet of Things in real scene digital twins. IEEE Internet Things J. 9(17), 15618–15629 (2022)

    Article  Google Scholar 

  6. Darbandi, M., et al.: Involving Kalman filter technique for increasing the reliability and efficiency of cloud computing. In: Proceedings of the International Conference on Scientific Computing (CSC). 2012. The Steering Committee of The World Congress in Computer Science, Computer ….

  7. Madakam, S., et al.: Internet of Things (IoT): a literature review. J. Comput. Commun. 3(05), 164 (2015)

    Article  Google Scholar 

  8. Abdullayeva, F.J.: Internet of Things-based healthcare system on patient demographic data in Health 4.0. CAAI Trans. Intell. Technol. 7(4), 644–657 (2022)

    Article  MathSciNet  Google Scholar 

  9. Tan, E., Halim, Z.A.J.I.J.R.: Health care monitoring system and analytics based on internet of things framework. IETE J. Res. 65(5), 653–660 (2019)

    Article  Google Scholar 

  10. Jiang, H., et al.: An energy-efficient framework for internet of things underlaying heterogeneous small cell networks. IEEE Trans. Mob. Comput. 21(1), 31–43 (2020)

    Article  Google Scholar 

  11. Heidari, A., et al.: A QoS-aware technique for computation offloading in IoT-edge platforms using a convolutional neural network and Markov decision process. IT Professional 25(1), 24–39 (2023)

    Article  Google Scholar 

  12. Rui, X., et al.: Load balancing in the internet of things using fuzzy logic and shark smell optimization algorithm. Circuit World 47(4), 335–344 (2021)

    Article  Google Scholar 

  13. Tabrizi, S.G., et al.: A new decision-making method for service discovery and selection in the internet of things using flower pollination algorithm. Wirel. Pers. Commun. 126(3), 2447–2468 (2022)

    Article  Google Scholar 

  14. Wu, J., et al.: Intelligent fitting global real-time task scheduling strategy for high-performance multi-core systems. CAAI Trans. Intell. Technol. 7(2), 244–255 (2022)

    Article  Google Scholar 

  15. Dai, X., et al.: Task co-offloading for D2D-assisted mobile edge computing in industrial internet of things. IEEE Trans. Ind. Inform. 19(1), 480–490 (2023). https://doi.org/10.1109/TII.2022.3158974

    Article  Google Scholar 

  16. Liu, C., et al.: Robust online tensor completion for IoT streaming data recovery. IEEE Trans. Neural Netw. Learn. Syst. 34, 10178–10192 (2022)

    Article  MathSciNet  Google Scholar 

  17. Naghib, A., et al.: A comprehensive and systematic literature review on the big data management techniques in the internet of things. Wirel. Netw. 29(3), 1085–1144 (2023)

    Article  Google Scholar 

  18. Sun, G., et al.: Low-Latency and Resource-Efficient Service Function Chaining Orchestration in Network Function Virtualization. IEEE Internet of Things Journal 7(7), 5760-5772. (2020). https://doi.org/10.1109/JIOT.2019.2937110

  19. Hamzei, M., Khandagh, S., Jafari Navimipour, N.: A quality-of-service-aware service composition method in the internet of things using a multi-objective fuzzy-based hybrid algorithm. Sensors 23(16), 7233 (2023)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Yi, T., Shi, M., Zhu, H.: Medical data publishing based on average distribution and clustering. CAAI Trans. Intell. Technol. 7(3), 381–394 (2022)

    Article  Google Scholar 

  21. Norozpour, S., Darbandi, M.: Proposing new method for clustering and optimizing energy consumption in WSN. Talent Dev. Excell. 12 (2020)

  22. Sun, G., et al.: Cost-efficient service function chain orchestration for low-latency applications in NFV networks. IEEE Intell. Syst. 13(4), 3877–3888 (2019). https://doi.org/10.1109/JSYST.2018.2879883

    Article  ADS  Google Scholar 

  23. Darbandi, M.: Proposing new intelligent system for suggesting better service providers in cloud computing based on Kalman filtering. HCTL Int. J. Technol. Innov. Res. 24(1), 1–9 (2017)

    Google Scholar 

  24. Darbandi, M.: Proposing new intelligence algorithm for suggesting better services to cloud users based on Kalman filtering. J. Comput. Sci. Appl. 5(1), 11–16 (2017)

    Google Scholar 

  25. Zhang, Z., et al.: Traffic dataset and dynamic routing algorithm in traffic simulation. J. Artif. Intell. Technol. 2(3), 111–122 (2022)

    Google Scholar 

  26. Khan, A.U., et al.: A blockchain scheme for authentication, data sharing and nonrepudiation to secure internet of wireless sensor things. Clust. Comput. 26(2), 945–960 (2023)

    Article  Google Scholar 

  27. Jiang, H., et al.: Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans. Mobile Comput. (2022)

  28. Ali, H., et al.: ARSH-FATI: a novel metaheuristic for cluster head selection in wireless sensor networks. IEEE Syst. J. 15(2), 2386–2397 (2020)

    Article  ADS  Google Scholar 

  29. Ni, Q., et al.: Influence-based community partition with sandwich method for social networks. IEEE Trans. Comput. Soc. Syst. 10(2), 819–830 (2022)

    Article  Google Scholar 

  30. Zheng, W., et al.: Lightweight transformer image feature extraction network. PeerJ Computer Science, 10, e1755. (2024). https://doi.org/10.7717/peerj-cs.1755

  31. Li, Q., et al.: H8 Consensus for Multiagent-Based Supply Chain Systems Under Switching Topology and Uncertain Demands. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 50(12), 4905-4918 (2020). https://doi.org/10.1109/TSMC.2018.2884510

  32. Xifilidis, T., Psannis, K.E.: Correlation-based wireless sensor networks performance: the compressed sensing paradigm. Clust. Comput. (2022). https://doi.org/10.1007/s10586-021-03480-4

    Article  Google Scholar 

  33. Al-Jarrah, M.A., et al.: Decision fusion for IoT-based wireless sensor networks. IEEE Internet Things J. 7(2), 1313–1326 (2019)

    Article  MathSciNet  Google Scholar 

  34. Darbandi, M.: Kalman filtering for estimation and prediction servers with lower traffic loads for transferring high-level processes in cloud computing. Int. J. Technol. Innov. Res 23(1), 10–20 (2017)

    MathSciNet  Google Scholar 

  35. Liao, Q., et al.: An integrated multi-task model for fake news detection. IEEE Trans. Knowl. Data Eng. 34(11), 5154–5165 (2021)

    Article  Google Scholar 

  36. Duan, Y., Zhao, Y., Hu, J.: An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: modeling, optimization and analysis. Sustain. Energy Grids Netw. 34, 101004 (2023)

    Article  Google Scholar 

  37. Chen, R., et al.: Image-denoising algorithm based on improved K-singular value decomposition and atom optimization. CAAI Trans. Intell. Technol. 7(1), 117–127 (2022)

    Article  Google Scholar 

  38. Hu, X., et al.: A coherent pattern mining algorithm based on all contiguous column bicluster. J. Artif. Intell. Technol. 2(3), 80–92 (2022)

    Google Scholar 

  39. Wang, X., et al.: Block switching: a stochastic approach for deep learning security. arXiv preprint arXiv:2002.07920 (2020)

  40. Shakeel, N., Shakeel, S.: Context-free word importance scores for attacking neural networks. J. Comput. Cognit. Eng. 1(4), 187–192 (2022)

    Article  Google Scholar 

  41. Wang, X., et al.: Fake node attacks on graph convolutional networks. J. Comput. Cognit. Eng. 1(4), 165–173 (2022)

    Article  Google Scholar 

  42. Khattab, H., Sharieh, A., Mahafzah, B.A.: Most valuable player algorithm for solving minimum vertex cover problem. Int. J. Adv. Comput. Sci. Appl. 10(8), 159–167 (2019)

    Google Scholar 

  43. Kusla, V., Brar, G.S.: A technique for cluster head selection in wireless sensor networks using african vultures optimization algorithm. EAI Endorsed Scal Inf Syst (2023). https://doi.org/10.4108/eetsis.v10i3.2680

    Article  Google Scholar 

  44. Tyagi, L.K., et al.: Energy efficient routing protocol using next cluster head selection process in two-level hierarchy for wireless sensor network. J. Pharm. Negat Results. (2023). https://doi.org/10.47750/pnr.2023.14.S02.81

    Article  Google Scholar 

  45. Gheisari, M., et al.: An efficient cluster head selection for wireless sensor network-based smart agriculture systems. Comput. Electron. Agric. 198, 107105 (2022)

    Article  Google Scholar 

  46. George, A.M., Kulkarni, S., Kurian, C.P.: Gaussian regression models for evaluation of network lifetime and cluster-head selection in wireless sensor devices. IEEE Access 10, 20875–20888 (2022)

    Article  Google Scholar 

  47. Alazab, M., et al.: Multi-objective cluster head selection using fitness averaged rider optimization algorithm for IoT networks in smart cities. Sustain. Energy Technol. Assess. 43, 100973 (2021)

    Google Scholar 

  48. Nandan, A.S., et al.: An optimized genetic algorithm for cluster head election based on movable sinks and adjustable sensing ranges in IoT-based HWSNs. IEEE Internet Things J. 9(7), 5027–5039 (2021)

    Article  Google Scholar 

  49. Hammodi, Z., Al Hilli, A., Al-Ibadi, M.: Optimal placement of single cluster head in wireless sensor networks via clustering. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). IEEE (2021).

  50. Suganthi, S., Usha, D.: Multi-objective particle swarm optimization with energy-density centroid based deputy cluster head selection scheme for IoT based sensor networks. Solid State Technol. 63(6), 18804–18816 (2020)

    Google Scholar 

  51. Altakhayneh, W.A., et al.: Cluster head selection using genetic algorithm in wireless network. In: 2019 IEEE 14th Malaysia International Conference on Communication (MICC). IEEE (2019).

  52. Rajasoundaran, S., et al.: Secure routing with multi-watchdog construction using deep particle convolutional model for IoT based 5G wireless sensor networks. Comput. Commun. 187, 71–82 (2022)

    Article  Google Scholar 

  53. Xu, X., Liu, W., Yu, L.: Trajectory prediction for heterogeneous traffic-agents using knowledge correction data-driven model. Inf. Sci. 608, 375–391 (2022). https://doi.org/10.1016/j.ins.2022.06.073

    Article  Google Scholar 

  54. Abbasi, A.A., Younis, M.: A survey on clustering algorithms for wireless sensor networks. Comput. Commun. 30(14–15), 2826–2841 (2007)

    Article  Google Scholar 

  55. Verma, S., Sood, N., Sharma, A.K.: Genetic algorithm-based optimized cluster head selection for single and multiple data sinks in heterogeneous wireless sensor network. Appl. Soft Comput. 85, 105788 (2019)

    Article  Google Scholar 

  56. Gupta, R.: Cluster head election in wireless sensor network: a comprehensive study and future directions. Int. J. Comput. Networks Appl 7, 178–192 (2020)

    MathSciNet  Google Scholar 

  57. Reddy, M.P.K., Babu, M.R.: Implementing self adaptiveness in whale optimization for cluster head section in Internet of Things. Clust. Comput. 22, 1361–1372 (2019)

    Article  Google Scholar 

  58. Iwendi, C., et al.: A metaheuristic optimization approach for energy efficiency in the IoT networks. Software 51(12), 2558–2571 (2021)

    Google Scholar 

  59. Pal, V., Singh, G., Yadav, R.: Cluster head selection scheme for data centric wireless sensor networks. In: 2013 3rd IEEE International Advance Computing Conference (IACC). IEEE (2013).

  60. Alanezi, M.A., Bouchekara, H.R., Javaid, M.S.: Range-based localization of a wireless sensor network for internet of things using received signal strength indicator and the most valuable player algorithm. Technologies 9(2), 42 (2021)

    Article  Google Scholar 

  61. Korashy, A., et al.: Most valuable player algorithm for solving direction overcurrent relays coordination problem. In: 2019 International conference on innovative trends in computer engineering (ITCE). IEEE (2019).

  62. Sun, S., Ma, L., Liu, Y.: A competitive Volleyball Algorithm to solve global optimization with the engineering problems (2021).

  63. Bouchekara, H.: Most Valuable Player Algorithm: a novel optimization algorithm inspired from sport. Oper. Res. Int. J. 20(1), 139–195 (2020)

    Article  Google Scholar 

  64. Srilakshmi, K., Babu, P.R., Aravindhababu, P.: An enhanced most valuable player algorithm based optimal power flow using Broyden’s method. Sustain. Energy Technol. Assess. 42, 100801 (2020)

    Google Scholar 

  65. Abdul-Adheem, W.R.: An enhanced particle swarm optimization algorithm. Int. J. Electr. Comput. Eng. 9(6), 4904–4907 (2019)

    Google Scholar 

  66. Behera, T.M., et al.: Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet Things J. 6(3), 5132–5139 (2019)

    Article  Google Scholar 

  67. Praveen Kumar Reddy, M., Rajasekhara Babu, M.: Energy efficient cluster head selection for internet of things. New Rev. Inf. Netw. 22(1), 54–70 (2017)

    Article  Google Scholar 

  68. Lu, S., et al.: Adaptive control of time delay teleoperation system with uncertain dynamics. Front. Neurorobot. 16, 928863 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rezaee, A.A., Raeisosadat, S.M.: Energy efficient clustering in IOT-based wireless sensor networks using whale optimization algorithm. J. Commun. Eng. 10, 109–126 (2022)

    Google Scholar 

  70. Kiani, F., Seyyedabbasi, A., Nematzadeh, S.: Improving the performance of hierarchical wireless sensor networks using the metaheuristic algorithms: efficient cluster head selection. Sens. Rev. 41, 368–381 (2021)

    Article  Google Scholar 

  71. Jiang, H., et al.: A utility-aware general framework with quantifiable privacy preservation for destination prediction in LBSs. IEEE/ACM Trans. Netw. 29(5), 2228–2241 (2021). https://doi.org/10.1109/TNET.2021.3084251

    Article  Google Scholar 

  72. Sun, G., et al.: Service function chain orchestration across multiple domains: a full mesh aggregation approach. IEEE Trans. Netw. Serv. Manag. 15(3), 1175–1191 (2018). https://doi.org/10.1109/TNET.2021.3084251

    Article  Google Scholar 

  73. Li, X., Sun, Y.: Stock intelligent investment strategy based on support vector machine parameter optimization algorithm. Neural Comput. Appl. 32, 1765–1775 (2020)

    Article  Google Scholar 

  74. Mao Y, et al.: A Novel airspace planning algorithm for cooperative target localization. Electronics. 11(18), 2950 (2022). https://doi.org/10.3390/electronics11182950

    Article  Google Scholar 

  75. Han, S., et al.: Practical and robust federated learning with highly scalable regression training. IEEE Trans. Neural Netw. Learn. Syst. (2023). https://doi.org/10.1109/TNNLS.2023.3271859

    Article  PubMed  Google Scholar 

  76. Luo, J., et al.: Using deep belief network to construct the agricultural information system based on internet of things. J. Supercomput. 78(1), 379–405 (2022)

    Article  Google Scholar 

  77. Cao, B., et al.: Security-aware industrial wireless sensor network deployment optimization. IEEE Trans. Ind. Inform. 16(8), 5309–5316 (2020). https://doi.org/10.1109/TII.2019.2961340

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61705064)

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YX; Data curation, DKV; Formal analysis, YX; Investigation, YX, DKV; Methodology, YX, DKV; Project administration, YX, DKV; Software, YX; Supervision, YX; Validation, YX; Visualization, YX; Writing—original draft and editing, YX, DKV.

Corresponding author

Correspondence to Yongjun Xiao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 3.

Table 3 A list of symbols and abbreviations used in the paper

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Voronkova, D.K. A new energy-aware technique to improve the network lifetime of wireless Internet of Things using a most valuable player algorithm. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04316-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04316-7

Keywords

Navigation