Skip to main content
Log in

Prediction-based scheduling techniques for cloud data center’s workload: a systematic review

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

A cloud data center provides various facilities such as storage, data accessibility, and running many specific applications on cloud resources. The unpredictable demand for service requests in cloud workloads affects the availability of resources during scheduling. It raises the issues of inaccurate workload prediction, lack of fulfillment in resource demands, load unbalancing, high power consumption due to heavy loads, and problems of under and overutilization of resources. Therefore, an efficient scheduling technique and an accurate forecasting model are needed to overcome these issues. Also, to deal with these challenges and provide optimal solutions, researchers must have a robust knowledge of cloud workloads, their types, issues, existing technologies, their advantages and disadvantages. However, previous research indicates limited systematic review studies exist for cloud workload applications with prediction-based scheduling techniques. Therefore, a survey is required that provides information related to cloud workload. To fulfill this requirement, the current study collects the related articles published in the past years. This paper is a systematic review study of prediction-based scheduling techniques that extract and evaluate data based on five criteria. It includes the datasets of different workload applications, resources, current prediction and scheduling techniques, and their related parameters. The survey is quite useful for academicians who want to select the problem and develop new techniques for issues related to cloud workload applications. It also gives an idea of existing approaches that are already implemented and employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Seddiki, D., Galan, S.G., Exposito, E.M., Ibanez, M.V., Marciniak, T., De Prado, R.J.P.: Sustainability-based framework for virtual machines migration among cloud data centers. In: 2021 15th Int. Conf. Signal Process. Commun. Syst. ICSPCS 2021 - Proc. (2021)

  2. Eloghdadi, H.M., Ramadan, R.A.: Resource scheduling for offline cloud computing using deep reinforcement learning. IJCSNS Int. J. Comput. Sci. Netw. Secur. 19, 54 (2019)

    Google Scholar 

  3. Aladwani, T.: Types of Task Scheduling Algorithms in Cloud Computing Environment. IntechOpen, London (2020)

    Book  Google Scholar 

  4. Wickremasinghe, B., Calheiros, R.N., Buyya, R.: CloudAnalyst: a cloudsim-based visual modeller for analysing cloud computing environments and applications. Proc. Int. Conf. Adv. Inf. Netw. Appl. AINA. (2010). https://doi.org/10.1109/AINA.2010.32

    Article  Google Scholar 

  5. Rodriguez, M.A., Buyya, R.: A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud computing environments. Concurr. Comput. 29, 1–23 (2017). https://doi.org/10.1002/cpe.4041

    Article  Google Scholar 

  6. Li, W., Wu, J., Cao, J., Chen, N., Zhang, Q., Buyya, R.: Blockchain-based trust management in cloud computing systems: a taxonomy, review and future directions. J. Cloud Comput. (2021). https://doi.org/10.1186/s13677-021-00247-5

    Article  Google Scholar 

  7. Ali, M.R., Ahmad, F., Chaudary, M.H., Khan, Z.A., Alqahtani, M.A., Alqurni, J.S., Ullah, Z., Khan, W.U.: Petri Net based modeling and analysis for improved resource utilization in cloud computing. PeerJ Comput. Sci. 7, 1–22 (2021). https://doi.org/10.7717/PEERJ-CS.351

    Article  Google Scholar 

  8. Balashunmugaraja, B., Ganeshbabu, T.R.: Privacy preservation of cloud data in business application enabled by multi-objective red deer-bird swarm algorithm. Knowl.-Based Syst. 236, 107748 (2022). https://doi.org/10.1016/j.knosys.2021.107748

    Article  Google Scholar 

  9. Alnumay, W., Ghosh, U.: A trust-based predictive model for mobile ad hoc network in internet of things. Sensors 19, 1–14 (2019). https://doi.org/10.3390/s19061467

    Article  Google Scholar 

  10. Yadav, C., Patro, B.D.K., Yadav, V.: Authentication, access control, VM allocation and energy efficiency towards securing computing environments in cloud computing. Ann. Roman. Soc. Cell Biol. 25, 17939–17954 (2021)

    Google Scholar 

  11. Bal, P.K., Mohapatra, S.K., Das, T.K., Srinivasan, K., Hu, Y.C.: A joint resource allocation, security with efficient task scheduling in cloud computing using hybrid machine learning techniques. Sensors 22, 1242 (2022). https://doi.org/10.3390/S22031242

    Article  Google Scholar 

  12. Syarif, I., Zaluska, E., Prugel-Bennett, A., Wills, G.: Application of Bagging, Boosting and Stacking to Intrusion Detection. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-31537-4_46

    Book  Google Scholar 

  13. Tabrizchi, H., Kuchaki Rafsanjani, M.: A survey on security challenges in cloud computing: issues, threats, and solutions. J. Supercomput. 76, 9493–9532 (2020). https://doi.org/10.1007/s11227-020-03213-1

    Article  Google Scholar 

  14. Kumar, J., Singh, A.K.: Performance assessment of time series forecasting models for cloud datacenter networks’ workload prediction. Wirel. Pers. Commun. 116, 1949–1969 (2021)

    Article  Google Scholar 

  15. Sayadnavard, M.H., Toroghi Haghighat, A., Rahmani, A.M.: A multi-objective approach for energy-efficient and reliable dynamic VM consolidation in cloud data centers. Eng. Sci. Technol. 2, 6 (2021). https://doi.org/10.1016/j.jestch.2021.04.014

    Article  Google Scholar 

  16. Elrotub, M., Gherbi, A.: Virtual machine classification-based approach to enhanced workload balancing for cloud computing applications. Procedia Comput. Sci. 130, 683–688 (2018). https://doi.org/10.1016/j.procs.2018.04.120

    Article  Google Scholar 

  17. Ramesh, R.K., Wang, H., Shen, H., Fan, Z.: Machine learning for load balancing in cloud datacenters. In: Proc. - 21st IEEE/ACM Int. Symp. Clust. Cloud Internet Comput. CCGrid 2021. pp. 186–195 (2021). https://doi.org/10.1109/CCGrid51090.2021.00028

  18. Kumar, J., Singh, A.K., Buyya, R.: Self Directed Learning Based Workload Forecasting Model for Cloud Resource Management. Elsevier, Amsterdam (2021)

    Book  Google Scholar 

  19. Gill, S.S., Garraghan, P., Stankovski, V., Casale, G., Thulasiram, R.K., Ghosh, S.K., Ramamohanarao, K., Buyya, R.: Holistic resource management for sustainable and reliable cloud computing: an innovative solution to global challenge. J. Syst. Softw. 155, 104–129 (2019). https://doi.org/10.1016/J.JSS.2019.05.025

    Article  Google Scholar 

  20. Zharikov, E., Telenyk, S., Bidyuk, P.: Adaptive workload forecasting in cloud data centers. J. Grid Comput. 18, 149–168 (2020). https://doi.org/10.1007/s10723-019-09501-2

    Article  Google Scholar 

  21. Thakur, N., Singh, A., Sangal, A.L.: Cloud services selection: a systematic review and future research directions. Comput. Sci. Rev. 46, 100514 (2022). https://doi.org/10.1016/j.cosrev.2022.100514

    Article  MATH  Google Scholar 

  22. Mashuqur Rahman Mazumder, A.K.M., Aslam Uddin, K.M., Arbe, N., Jahan, L., Whaiduzzaman, M.: Dynamic task scheduling algorithms in cloud computing. In: Proceedings of the 3rd International Conference on Electronics and Communication and Aerospace Technology, ICECA 2019. pp. 1280–1286. Institute of Electrical and Electronics Engineers Inc. (2019)

  23. Kaur, G., Bala, A.: OPSA: an optimized prediction based scheduling approach for scientific applications in cloud environment. Clust. Comput. 24, 1955–1974 (2021)

    Article  Google Scholar 

  24. Al-Maytami, B.A., Fan, P., Hussain, A., Baker, T., Liatsist, P.: A task scheduling algorithm with improved makespan based on prediction of tasks computation time algorithm for cloud computing. IEEE Access. 7, 160916–160926 (2019). https://doi.org/10.1109/ACCESS.2019.2948704

    Article  Google Scholar 

  25. Gao, J., Wang, H., Shen, H.: Machine learning based workload prediction in cloud computing. In: Proc. - Int. Conf. Comput. Commun. Networks, ICCCN. 2020-Aug 1–9 (2020). https://doi.org/10.1109/ICCCN49398.2020.9209730

  26. Baig, S.U.R., Iqbal, W., Berral, J.L., Erradi, A., Carrera, D.: Adaptive prediction models for data center resources utilization estimation. IEEE Trans. Netw. Serv. Manag. 16, 1681–1693 (2019). https://doi.org/10.1109/TNSM.2019.2932840

    Article  Google Scholar 

  27. Baig, S.R., Iqbal, W., Berral, J.L., Carrera, D.: Adaptive sliding windows for improved estimation of data center resource utilization. Future Gener. Comput. Syst. 104, 212–224 (2020). https://doi.org/10.1016/j.future.2019.10.026

    Article  Google Scholar 

  28. Peng, Z., Lin, J., Cui, D., Li, Q., He, J.: A multi-objective trade-off framework for cloud resource scheduling based on the Deep Q-network algorithm. Clust. Comput. 23, 2753–2767 (2020). https://doi.org/10.1007/S10586-019-03042-9/FIGURES/9

    Article  Google Scholar 

  29. Matrouk, K., Alatoun, K.: Scheduling algorithms in fog computing: a survey. Int. J. Netw. Distrib. Comput. 9, 59–74 (2021). https://doi.org/10.2991/IJNDC.K.210111.001

    Article  Google Scholar 

  30. Zhang, N., Yang, X., Zhang, M., Sun, Y., Long, K.: A genetic algorithm-based task scheduling for cloud resource crowd-funding model. Int. J. Commun. Syst. (2018). https://doi.org/10.1002/dac.3394

    Article  Google Scholar 

  31. Masdari, M., Salehi, F., Jalali, M., Bidaki, M.: A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst. Manag. 25, 122–158 (2017). https://doi.org/10.1007/s10922-016-9385-9

    Article  Google Scholar 

  32. Farid, M., Latip, R., Hussin, M., Hamid, N.A.W.A.: A survey on QoS requirements based on particle swarm optimization scheduling techniques for workflow scheduling in cloud computing. Symmetry (Basel). (2020). https://doi.org/10.3390/SYM12040551

    Article  Google Scholar 

  33. Abdullah, L., Li, H., Al-Jamali, S., Al-Badwi, A., Ruan, C.: Predicting multi-attribute host resource utilization using support vector regression technique. IEEE Access. 8, 66048–66067 (2020). https://doi.org/10.1109/ACCESS.2020.2984056

    Article  Google Scholar 

  34. Kaur, K., Garg, S., Aujla, G.S., Kumar, N., Zomaya, A.Y.: A multi-objective optimization scheme for job scheduling in sustainable cloud data centers. IEEE Trans. Cloud Comput. 10, 172–186 (2022). https://doi.org/10.1109/TCC.2019.2950002

    Article  Google Scholar 

  35. Alboaneen, D., Tianfield, H., Zhang, Y., Pranggono, B.: A metaheuristic method for joint task scheduling and virtual machine placement in cloud data centers. Future Gener. Comput. Syst. 115, 201–212 (2021). https://doi.org/10.1016/j.future.2020.08.036

    Article  Google Scholar 

  36. Nawrocki, P., Osypanka, P., Nawrocki, P., Osypanka, P.: Cloud resource demand prediction using machine learning in the context of QoS parameters. J. Grid Comput. 19, 1–20 (2021). https://doi.org/10.1007/S10723-021-09561-3

    Article  Google Scholar 

  37. Mohamed, A., Hamdan, M., Khan, S., Abdelaziz, A., Babiker, S.F., Imran, M., Marsono, M.N.: Software-defined networks for resource allocation in cloud computing: a survey. Comput. Netw. 195, 108151 (2021). https://doi.org/10.1016/j.comnet.2021.108151

    Article  Google Scholar 

  38. Ouhame, S., Hadi, Y., Ullah, A.: An efficient forecasting approach for resource utilization in cloud data center using CNN-LSTM model. Neural Comput. Appl. 33, 10043–10055 (2021). https://doi.org/10.1007/s00521-021-05770-9

    Article  Google Scholar 

  39. Cao, R., Yu, Z., Marbach, T., Li, J., Wang, G., Liu, X.: Load prediction for data centers based on database service. Proc. Int. Comput. Softw. Appl. Conf. 1, 728–737 (2018). https://doi.org/10.1109/COMPSAC.2018.00109

    Article  Google Scholar 

  40. Su, M., Wang, G., Choo, K.K.R.: Prediction-based resource deployment and task scheduling in edge-cloud collaborative computing. Wirel. Commun. Mob. Comput. 222, 1–17 (2022). https://doi.org/10.1155/2022/2568503

    Article  Google Scholar 

  41. Mahmoud, Q.H.: Analysis of job failure and prediction model for cloud computing using machine learning. Sensors. 22, 1–25 (2022)

    Google Scholar 

  42. Morariu, C., Borangiu, T.: Time series forecasting for dynamic scheduling of manufacturing processes. (2018)

  43. Dezhabad, N., Ganti, S., Shoja, G.: Cloud workload characterization and profiling for resource allocation. In: Proceeding 2019 IEEE 8th Int. Conf. Cloud Networking, CloudNet 2019. (2019). https://doi.org/10.1109/CLOUDNET47604.2019.9064138

  44. Kaur, G., Bala, A.: Prediction based task scheduling approach for floodplain application in cloud environment. Computing 103, 895–916 (2021)

    Article  Google Scholar 

  45. Sharkh, M.A., Xu, Y., Leyder, E.: CloudMach: Cloud Computing Application Performance Improvement through Machine Learning. Can. Conf. Electr. Comput. Eng. 2020-Augus, 1–6 (2020). https://doi.org/10.1109/CCECE47787.2020.9255686

  46. Yeung, G., Borowiec, D., Yang, R., Friday, A., Harper, R., Garraghan, P.: Horus: Interference-aware and prediction-based scheduling in deep learning systems. IEEE Trans. Parallel Distrib. Syst. 33, 88–100 (2022). https://doi.org/10.1109/TPDS.2021.3079202

    Article  Google Scholar 

  47. Jassas, M.S., Mahmoud, Q.H.: Analysis of job failure and prediction model for cloud computing using machine learning. Sensors. 22, 2035 (2022)

    Article  Google Scholar 

  48. Wang, C., Li, J., He, Y., Xiao, K., Zhang, H.: Destination prediction-based scheduling algorithms for message delivery in IoVs. IEEE Access. 8, 14965–14976 (2020). https://doi.org/10.1109/aCCESS.2020.2966494

    Article  Google Scholar 

  49. Yu, J., Gao, M., Li, Y., Zhang, Z., Ip, W.H., Yung, K.L.: Workflow performance prediction based on graph structure aware deep attention neural network. J. Ind. Inf. Integr. 27, 100337 (2022). https://doi.org/10.1016/j.jii.2022.100337

    Article  Google Scholar 

  50. Yan, J., Rui, L.L., Yang, Y., Chen, S., Chen, X.: Resource Scheduling Algorithms for Burst Network Flow in Edge Computing. Lect. Notes Electr. Eng. 808 LNEE, pp. 1569–1578 (2022). https://doi.org/10.1007/978-981-16-6554-7_173

  51. Chen, L., Zhang, W., Ye, H.: Accurate workload prediction for edge data centers: Savitzky-Golay filter, CNN and BiLSTM with attention mechanism. Appl. Intell. 52, 13027–13042 (2022). https://doi.org/10.1007/S10489-021-03110-X/FIGURES/12

    Article  Google Scholar 

  52. Praveen, S.P., Thirupathi, K., Janakiramaiah, B.: Effective allocation of resources and task scheduling in cloud environment using social group optimization. Arab. J. Sci. Eng. 43, 4265–4272 (2018). https://doi.org/10.1007/s13369-017-2926-z

    Article  Google Scholar 

  53. Mortazavi-Dehkordi, M., Zamanifar, K.: Efficient deadline-aware scheduling for the analysis of big data streams in public cloud. Clust. Comput. 23, 241–263 (2020). https://doi.org/10.1007/S10586-019-02908-2/FIGURES/14

    Article  Google Scholar 

  54. Cheng, F., Huang, Y., Tanpure, B., Sawalani, P., Cheng, L., Liu, C.: Cost-aware job scheduling for cloud instances using deep reinforcement learning. Clust. Comput. 25, 619–631 (2022). https://doi.org/10.1007/S10586-021-03436-8/FIGURES/5

    Article  Google Scholar 

  55. Theodoropoulos, T., Makris, A., Boudi, A., Taleb, T., Herzog, U., Rosa, L., Cordeiro, L., Tserpes, K., Spatafora, E., Romussi, A., Zschau, E., Kamarianakis, M., Protopsaltis, A., Papagiannakis, G., Dazzi, P.: Cloud-based XR services: a survey on relevant challenges and enabling technologies. J. Netw. Netw. Appl. 2, 1–22 (2022). https://doi.org/10.33969/J-NANA.2022.020101

    Article  Google Scholar 

  56. Hamad, R.M.H., Al Fayoumi, M.: Modernization of a classical data center (CDC) vs. adoption in cloud computing calculate total cost of ownership for both cloud and CDC - Jordanian Case Study. ACIT 2018 - 19th Int. Arab Conf. Inf. Technol. pp. 1–8 (2019). https://doi.org/10.1109/ACIT.2018.8672686

  57. Vazquez, C., Krishnan, R., John, E.: Time series forecasting of cloud data center workloads for dynamic resource provisioning. J. Wirel. Mob. Netw. 6, 87–110 (2015). https://doi.org/10.22667/JOWUA.2015.09.31.087

    Article  Google Scholar 

  58. Sakpal, M.: 7 Workloads That Should Be Moved to Cloud Right Now, https://www.gartner.com/smarterwithgartner/7-workloads-that-should-be-moved-to-cloud-right-now

  59. Jyoti, A., Shrimali, M., Tiwari, S., Singh, H.P.: Cloud computing using load balancing and service broker policy for IT service: a taxonomy and survey. J. Ambient Intell. Humaniz. Comput. 11, 4785–4814 (2020). https://doi.org/10.1007/s12652-020-01747-z

    Article  Google Scholar 

  60. Mehmood, T., Latif, S., Malik, S.: Prediction of cloud computing resource utilization. In: 2018 15th Int. Conf. Smart Cities Improv. Qual. Life Using ICT IoT, HONET-ICT 2018. 38–42 (2018). https://doi.org/10.1109/HONET.2018.8551339

  61. Shen, S., Van Beek, V., Iosup, A.: Statistical characterization of business-critical workloads hosted in cloud datacenters. In: Proc. - 2015 IEEE/ACM 15th Int. Symp. Clust. Cloud, Grid Comput. CCGrid 2015. pp. 465–474 (2015). https://doi.org/10.1109/CCGrid.2015.60

  62. Zia Ullah, Q., Hassan, S., Khan, G.M.: Adaptive resource utilization prediction system for infrastructure as a service cloud. Comput. Intell. Neurosci. 2017, 1–12 (2017). https://doi.org/10.1155/2017/4873459

    Article  Google Scholar 

  63. Bashir, S., Mustafa, S., Ahmad, R.W., et al.: Multi-factor nature inspired SLA-aware energy efficient resource management for cloud environments. Clust. Comput 26, 1643–1658 (2023). https://doi.org/10.1007/s10586-022-03690-4

    Article  Google Scholar 

  64. Shukur, H., Zeebaree, S., Zebari, R., Zeebaree, D., Ahmed, O., Salih, A.: Cloud computing virtualization of resources allocation for distributed systems. J. Appl. Sci. Technol. Trends. 1, 98–105 (2020). https://doi.org/10.38094/jastt1331

    Article  Google Scholar 

  65. Kaur, G., Bala, A.: A survey of prediction-based resource scheduling techniques for physics-based scientific applications. Mod. Phys. Lett. B (2018). https://doi.org/10.1142/S0217984918502950

    Article  Google Scholar 

  66. Vashistha, A., Sharma, C.M., Mahapatra, R.P., Chariar, V.M., Sharma, N.: Sustainable technical debt-aware computing model for virtual machine migration (TD4VM) in IaaS cloud. Wirel. Commun. Mob. Comput. 2022, 1–12 (2022). https://doi.org/10.1155/2022/6709797

    Article  Google Scholar 

  67. Ebadifard, F., Babamir, S.M.: Autonomic task scheduling algorithm for dynamic workloads through a load balancing technique for the cloud-computing environment. Clust. Comput. 24, 1075–1101 (2021). https://doi.org/10.1007/S10586-020-03177-0/TABLES/12

    Article  Google Scholar 

  68. Stavrinides, G.L., Karatza, H.D.: The impact of workload variability on the energy efficiency of large-scale heterogeneous distributed systems. Simul. Model. Pract. Theory. 89, 135–143 (2018). https://doi.org/10.1016/j.simpat.2018.09.013

    Article  Google Scholar 

  69. Shen, S., Van Beek, V., Iosup, A., Shen, {s, Nl, A.I.: Delft University of technology parallel and distributed systems report series statistical characterization of business-critical workloads hosted in cloud datacenters. (2014)

  70. Calheiros, R.N., Ranjany, R., Buyya, R.: Virtual machine provisioning based on analytical performance and QoS in cloud computing environments. Proc. Int. Conf. Parallel Process. pp. 295–304 (2011). https://doi.org/10.1109/ICPP.2011.17

  71. Salot, P.: A survey of various scheduling algorithm in cloud computing environment. Int. J. Res. Eng. Technol. 2, 131–135 (2013). https://doi.org/10.15623/ijret.2013.0202008

    Article  Google Scholar 

  72. Tibermacine, O., Tibermacine, C., Kerdoudi, M.L.: Reputation evaluation with malicious feedback prevention using a HITS-based model. In: Proc. - 2019 IEEE Int. Conf. Web Serv. ICWS 2019 - Part 2019 IEEE World Congr. Serv. 180–187 (2019). https://doi.org/10.1109/ICWS.2019.00039

  73. Lundin, R.: The advantages of keeping mission critical workloads on-premises vs going to the cloud. (2018)

  74. Liu, C., Liu, C., Shang, Y., Chen, S., Cheng, B., Chen, J.: An adaptive prediction approach based on workload pattern discrimination in the cloud. J. Netw. Comput. Appl. 80, 35–44 (2017). https://doi.org/10.1016/j.jnca.2016.12.017

    Article  Google Scholar 

  75. Li, J., Feng, L., Fang, S.: An greedy-based job scheduling algorithm in cloud computing. J. Softw. 9, 921–925 (2014). https://doi.org/10.4304/jsw.9.4.921-925

    Article  Google Scholar 

  76. Xavier, S., Lovesum, S.P.J.: A survey of various workflow scheduling algorithms in cloud environment. Int. J. Sci. Res. Publ. 3, 2–4 (2013)

    Google Scholar 

  77. Kaur, G., Bala, A.: An efficient resource prediction–based scheduling technique for scientific applications in cloud environment. Concurr. Eng. Res. Appl. 27, 112–125 (2019). https://doi.org/10.1177/1063293X19832946

    Article  Google Scholar 

  78. Gautam, J. V., Prajapati, H.B., Dabhi, V.K., Chaudhary, S.: A survey on job scheduling algorithms in Big data processing. Proc. 2015 IEEE Int. Conf. Electr. Comput. Commun. Technol. ICECCT 2015. (2015). https://doi.org/10.1109/ICECCT.2015.7226035

  79. Bi, J., Li, S., Yuan, H., Zhou, M.C.: Integrated deep learning method for workload and resource prediction in cloud systems. Neurocomputing 424, 35–48 (2021). https://doi.org/10.1016/J.NEUCOM.2020.11.011

    Article  Google Scholar 

  80. Saxena, D., Singh, A.K.: Auto-adaptive Learning-Based Workload Forecasting in Dynamic Cloud Environment. Taylor & Francis, London (2020)

    Google Scholar 

  81. Banerjee, S., Roy, S., Khatua, S.: Efficient resource utilization using multi-step-ahead workload prediction technique in cloud. J. Supercomput. 77, 10636–10663 (2021). https://doi.org/10.1007/s11227-021-03701-y

    Article  Google Scholar 

  82. Saxena, S., Sivalingam, K.M.: Slice admission control using overbooking for enhancing provider revenue in 5G Networks. In: Proc. IEEE/IFIP Netw. Oper. Manag. Symp. 2022 Netw. Serv. Manag. Era Cloudification, Softwarization Artif. Intell. NOMS 2022. (2022). https://doi.org/10.1109/NOMS54207.2022.9789905

  83. Sharma, O., Saini, H.: VM consolidation for cloud data center using median based threshold approach. Procedia Comput. Sci. 89, 27–33 (2016). https://doi.org/10.1016/j.procs.2016.06.005

    Article  Google Scholar 

  84. Zhang, Q., Yang, L.T., Yan, Z., Chen, Z., Li, P.: An efficient deep learning model to predict cloud workload for industry informatics. IEEE Trans. Ind. Inf. 14, 3170–3178 (2018). https://doi.org/10.1109/TII.2018.2808910

    Article  Google Scholar 

  85. Zhu, Y., Zhang, W., Chen, Y., Gao, H.: A novel approach to workload prediction using attention-based LSTM encoder-decoder network in cloud environment. Eurasip J. Wirel. Commun. Netw. 2019, 1–18 (2019). https://doi.org/10.1186/S13638-019-1605-Z/FIGURES/12

    Article  Google Scholar 

  86. Xu, M., Song, C., Wu, H., Gill, S.S., Ye, K., Xu, C.: esDNN: deep neural network based multivariate workload prediction in cloud computing environments. ACM Trans. Internet Technol. 22, 1–24 (2022). https://doi.org/10.1145/3524114

    Article  Google Scholar 

  87. Patel, E., Kushwaha, S., Patel, E., Kushwaha, D.S.: A hybrid CNN-LSTM model for predicting server load in cloud computing. J. Supercomput. 78, 10327–10356 (2022). https://doi.org/10.1007/s11227-021-04234-0

    Article  Google Scholar 

  88. Kumar, J., Singh, A.K.: Workload prediction in cloud using artificial neural network and adaptive differential evolution. Future Gener. Comput. Syst. 81, 41–52 (2018). https://doi.org/10.1016/J.FUTURE.2017.10.047

    Article  Google Scholar 

  89. Amekraz, Z., Hadi, M.Y.: CANFIS: a chaos adaptive neural fuzzy inference system for workload prediction in the cloud. IEEE Access. 10, 49808–49828 (2022). https://doi.org/10.1109/ACCESS.2022.3174061

    Article  Google Scholar 

  90. Kumar, J., Saxena, D., Singh, A.K., Mohan, A.: BiPhase adaptive learning-based neural network model for cloud datacenter workload forecasting. Sensors 24, 14593 (2020)

    Google Scholar 

  91. Sarker, I.H.: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2, 1–20 (2021). https://doi.org/10.1007/S42979-021-00815-1/FIGURES/13

    Article  MathSciNet  Google Scholar 

  92. Murad, S.S., Abdal, R.B., Alsandi, N., Faraj, R., SalamMurad, S., Badeel, R., Salih, N., Alsandi, A., Alshaaya, R.F., Ahmed, R.A., Muhammed, A., Derahman, M.: Optimized MIN-MIN task scheduling algorithm for scientific workflows in a cloud environment. J. Theor. Appl. Inf. Technol. 31, 480 (2022)

    Google Scholar 

  93. Banik, S., Sharma, N., Mangla, M., Mohanty, S.N., Shitharth, S.: LSTM based decision support system for swing trading in stock market. Knowl.-Based Syst. 239, 107994 (2022). https://doi.org/10.1016/j.knosys.2021.107994

    Article  Google Scholar 

  94. Prakash, K.B., Imambi, S.S., Ismail, M., Kumar, T.P., Pawan, Y.V.R.N.: Analysis, prediction and evaluation of COVID-19 datasets. Int. J. Emerg. Trends Eng. Res. 8, 2199–2204 (2020)

    Article  Google Scholar 

  95. Yu, K., Yang, Z., Wu, C., Huang, Y., Xie, X.: In-hospital resource utilization prediction from electronic medical records with deep learning. Knowledge-Based Syst. 223, 107052 (2021). https://doi.org/10.1016/j.knosys.2021.107052

    Article  Google Scholar 

  96. Banerjee, A., Pasea, L., Harris, S., Gonzalez-Izquierdo, A., Torralbo, A., Shallcross, L., Noursadeghi, M., Pillay, D., Sebire, N., Holmes, C., Pagel, C., Wong, W.K., Langenberg, C., Williams, B., Denaxas, S., Hemingway, H.: Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: a population-based cohort study. Lancet 395, 1715–1725 (2020). https://doi.org/10.1016/S0140-6736(20)30854-0

    Article  Google Scholar 

  97. Heidari, M., Garnaik, P.P., Dutta, A.: The valorization of plastic via thermal means: Industrial scale combustion methods. Plast. to Energy Fuel, Chem. Sustain. Implic. 295–312 (2018). https://doi.org/10.1016/B978-0-12-813140-4.00011-X

  98. Gao, M., Li, Y., Yu, J.: Workload Prediction of Cloud Workflow Based on Graph Neural Network. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 12999 LNCS, pp. 169–189 (2021). https://doi.org/10.1007/978-3-030-87571-8_15/COVER

  99. Valarmathi, K., Kanaga Suba Raja, S.: Resource utilization prediction technique in cloud using knowledge based ensemble random forest with LSTM model. Concurr. Eng. Res. Appl. 29, 396–404 (2021)

    Article  Google Scholar 

  100. El Motaki, S., Yahyaouy, A., Gualous, H., Sabor, J.: A new weighted fuzzy C-means clustering for workload monitoring in cloud datacenter platforms. Clust. Comput. 24, 3367 (2021)

    Article  Google Scholar 

  101. Karim, M.E., Maswood, M.M.S., Das, S., Alharbi, A.G.: BHyPreC: a novel Bi-LSTM based hybrid recurrent neural network model to predict the CPU workload of cloud virtual machine. IEEE Access. 9, 131476–131495 (2021). https://doi.org/10.1109/ACCESS.2021.3113714

    Article  Google Scholar 

  102. Tseng, F.H., Wang, X., Chou, L.D., Chao, H.C., Leung, V.C.M.: Dynamic resource prediction and allocation for cloud data center using the multiobjective genetic algorithm. IEEE Syst. J. 12, 1688–1699 (2018). https://doi.org/10.1109/JSYST.2017.2722476

    Article  Google Scholar 

  103. Jiang, H., Haihong, E., Song, M.: Multi-prediction based scheduling for hybrid workloads in the cloud data center. Clust. Comput. 21, 1607–1622 (2018). https://doi.org/10.1007/s10586-018-2265-1

    Article  Google Scholar 

  104. Chen, W., Ye, K., Wang, Y., Xu, G., Xu, C.Z.: How Does the Workload Look Like in Production Cloud? Analysis and Clustering of Workloads on Alibaba Cluster Trace. Proc. Int. Conf. Parallel Distrib. Syst. - ICPADS. 2018-December, pp. 102–109 (2019). https://doi.org/10.1109/PADSW.2018.8644579

  105. Chen, Z., Hu, J., Min, G., Zomaya, A.Y., El-Ghazawi, T.: Towards accurate prediction for high-dimensional and highly-variable cloud workloads with deep learning. IEEE Trans. Parallel Distrib. Syst. 31, 923–934 (2020). https://doi.org/10.1109/TPDS.2019.2953745

    Article  Google Scholar 

  106. Shyam, G.K., Manvi, S.S.: Virtual resource prediction in cloud environment: a Bayesian approach. J. Netw. Comput. Appl. 65, 144–154 (2016). https://doi.org/10.1016/J.JNCA.2016.03.002

    Article  Google Scholar 

  107. Qaddoum, K.S., Elemam, N.N., Abualhaj, M.A., Qaddoum, K.: Elastic neural network method for load prediction in cloud computing grid. Int. J. Electr. Comput. Eng. 9, 1201–1208 (2019). https://doi.org/10.11591/ijece.v9i2.pp1201-1208

    Article  Google Scholar 

  108. Alsharif, M.H., Younes, M.K., Kim, J.: Time series ARIMA model for prediction of daily and monthly average global solar radiation: the case study of Seoul, South Korea. Symmetry. 11, 240 (2019). https://doi.org/10.3390/SYM11020240

    Article  Google Scholar 

  109. Idrees, S.M., Alam, M.A., Agarwal, P.: A prediction approach for stock market volatility based on time series data. IEEE Access. 7, 17287–17298 (2019). https://doi.org/10.1109/ACCESS.2019.2895252

    Article  Google Scholar 

  110. Liang, H.: An intelligent prediction for sports industry scale based on time series algorithm and deep learning. Comput. Intell. Neurosci. 2022, 9649825 (2022). https://doi.org/10.1155/2022/9649825

    Article  Google Scholar 

  111. Barrera-Animas, A.Y., Oyedele, L.O., Bilal, M., Akinosho, T.D., Delgado, J.M.D., Akanbi, L.A.: Rainfall prediction: a comparative analysis of modern machine learning algorithms for time-series forecasting. Mach. Learn. Appl. 7, 100204 (2022). https://doi.org/10.1016/J.MLWA.2021.100204

    Article  Google Scholar 

  112. Shastri, S., Singh, K., Kumar, S., Kour, P., Mansotra, V.: Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study. Chaos Solitons Fract. 140, 110227 (2020). https://doi.org/10.1016/j.chaos.2020.110227

    Article  MathSciNet  Google Scholar 

  113. Janiesch, C., Zschech, P., Heinrich, K.: Machine learning and deep learning. Electron. Mark. 31, 685–695 (2021). https://doi.org/10.1007/S12525-021-00475-2/TABLES/2

    Article  Google Scholar 

  114. Chen, H., Fu, X., Tang, Z., Zhu, X.: Resource monitoring and prediction in cloud computing environments. In: Proc. - 3rd Int. Conf. Appl. Comput. Inf. Technol. 2nd Int. Conf. Comput. Sci. Intell. ACIT-CSI 2015. 288–292 (2015). https://doi.org/10.1109/ACIT-CSI.2015.58

  115. Cetinski, K., Juric, M.B.: AME-WPC: advanced model for efficient workload prediction in the cloud. J. Netw. Comput. Appl. 55, 191–201 (2015). https://doi.org/10.1016/j.jnca.2015.06.001

    Article  Google Scholar 

  116. Hu, Y., Deng, B., Peng, F., Wang, D.: Workload prediction for cloud computing elasticity mechanism. In: Proc. 2016 IEEE Int. Conf. Cloud Comput. Big Data Anal. ICCCBDA 2016. 244–249 (2016). https://doi.org/10.1109/ICCCBDA.2016.7529565

  117. Gupta, S., Dinesh, D.A.: Resource usage prediction of cloud workloads using deep bidirectional long short term memory networks. 11th IEEE Int. Conf. Adv. Networks Telecommun. Syst. ANTS 2017. 1–6 (2018). https://doi.org/10.1109/ANTS.2017.8384098

  118. Sniezynski, B., Nawrocki, P., Wilk, M., Jarzab, M., Zielinski, K.: VM reservation plan adaptation using machine learning in cloud computing. J. Grid Comput. 17, 797–812 (2019). https://doi.org/10.1007/S10723-019-09487-X/METRICS

    Article  Google Scholar 

  119. Khan, T., Tian, W., Ilager, S., Buyya, R.: Workload forecasting and energy state estimation in cloud data centres: ML-centric approach. Future Gener. Comput. Syst. 128, 320–332 (2022). https://doi.org/10.1016/j.future.2021.10.019

    Article  Google Scholar 

  120. Gadhavi, L.J., Bhavsar, M.D.: Adaptive cloud resource management through workload prediction. Energy Syst. 13, 601–623 (2022). https://doi.org/10.1007/S12667-019-00368-6/FIGURES/9

    Article  Google Scholar 

  121. Vijindra, S.S.: Survey on scheduling issues in cloud computing. Procedia Eng. 38, 2881–2888 (2012). https://doi.org/10.1016/j.proeng.2012.06.337

    Article  Google Scholar 

  122. Mohiddin, M.K., Kohli, R., Dutt, V.B., Dixit, P., Michal, G.: Energy-efficient enhancement for the prediction-based scheduling algorithm for the improvement of network lifetime in WSNs. Wirel. Commun. Mob. Comput. (2021). https://doi.org/10.1155/2021/9601078

    Article  Google Scholar 

  123. Zeng, F., Zhang, R., Cheng, X., Yang, L.: Channel prediction based scheduling for data dissemination in VANETs. IEEE Commun. Lett. 21, 1409–1412 (2017). https://doi.org/10.1109/LCOMM.2017.2676766

    Article  Google Scholar 

  124. Pratap, R., Zaidi, T.: Comparative Study of Task Scheduling Algorithms through Cloudsim. In: 2018 7th International Conference on Reliability, Infocom Technologies and Optimization: Trends and Future Directions, ICRITO 2018. pp. 397–400 (2018)

  125. Zhou, K., Zhou, K., Yang, S.: Reinforcement learning-based scheduling strategy for energy storage in microgrid. J. Energy Storage. 51, 104379 (2022). https://doi.org/10.1016/j.est.2022.104379

    Article  Google Scholar 

  126. Chen, Z., Zhu, Y., Di, Y., Feng, S.: A dynamic resource scheduling method based on fuzzy control theory in cloud environment. J. Control Sci. Eng. 2015, 1–10 (2015). https://doi.org/10.1155/2015/383209

    Article  MATH  Google Scholar 

  127. Atef, S., Ismail, N., Eltawil, A.B.: A new fuzzy logic based approach for optimal household appliance scheduling based on electricity price and load consumption prediction. Adv. Build. Energy Res. 16, 262–280 (2022). https://doi.org/10.1080/17512549.2021.1873183

    Article  Google Scholar 

  128. Ismail, L., Materwala, H.: EATSVM: energy-aware task scheduling on cloud virtual machines. Procedia Comput. Sci. 135, 248–258 (2018). https://doi.org/10.1016/j.procs.2018.08.172

    Article  Google Scholar 

  129. Jiang, L., Sun, X., Mercaldo, F., Santone, A.: DECAB-LSTM: deep contextualized attentional bidirectional LSTM for cancer hallmark classification. Knowl.-Based Syst. 210, 106486 (2020). https://doi.org/10.1016/j.knosys.2020.106486

    Article  Google Scholar 

  130. Banerjee, S., Adhikari, M., Kar, S., Biswas, U.: Development and analysis of a new cloudlet allocation strategy for QoS improvement in cloud. Arab. J. Sci. Eng. 40, 1409–1425 (2015). https://doi.org/10.1007/s13369-015-1626-9

    Article  MathSciNet  Google Scholar 

  131. Hespanha, J.P., Chinchilla, R., Costa, R.R., Erdal, M.K., Yang, G.: Forecasting COVID-19 cases based on a parameter-varying stochastic SIR model. Annu. Rev. Control. 51, 460–476 (2021). https://doi.org/10.1016/j.arcontrol.2021.03.008

    Article  MathSciNet  Google Scholar 

  132. Suleiman, B., Sakr, S., Jeffery, R., Liu, A.: On understanding the economics and elasticity challenges of deploying business applications on public cloud infrastructure. J. Internet Serv. Appl. 3, 173–193 (2012). https://doi.org/10.1007/s13174-011-0050-y

    Article  Google Scholar 

  133. Madni, S.H.H., Abd Latiff, M.S., Abdullahi, M., Abdulhamid, S.M., Usman, M.J.: Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment. PLoS ONE 12, e0176321 (2017). https://doi.org/10.1371/journal.pone.0176321

    Article  Google Scholar 

  134. Vijaya Kumari, C., Aharonu, M., Sunil, T.: Energy efficient resource allocation in cloud computing. Int. J. Eng. Adv. Technol. 8, 2071–2074 (2019). https://doi.org/10.35940/ijeat.F1394.0986S319

    Article  Google Scholar 

  135. Liang, B., Wu, D., Wu, P., Su, Y.: An energy-aware resource deployment algorithm for cloud data centers based on dynamic hybrid machine learning. Knowl.-Based Syst. 222, 1070 (2021). https://doi.org/10.1016/j.knosys.2021.107020

    Article  Google Scholar 

  136. Shekhawat, V.S., Gautam, A., Thakrar, A.: Datacenter Workload Classification and Characterization: An Empirical Approach. 2018 13th Int. Conf. Ind. Inf. Syst. ICIIS 2018 - Proc. pp. 1–7 (2018). https://doi.org/10.1109/ICIINFS.2018.8721402

  137. Dinda, P.A.: A prediction-based real-time scheduling advisor. Proc. - Int. Parallel Distrib. Process. Symp. IPDPS 2002. pp. 88–95 (2002). https://doi.org/10.1109/IPDPS.2002.1015480

  138. Zhang, W., Li, B., Zhao, D., Gong, F., Lu, Q.: Workload prediction for cloud cluster using a recurrent neural network. In: Proc. - 2016 Int. Conf. Identification, Inf. Knowl. Internet Things, IIKI 2016. 2018-Janua, 104–109 (2018). https://doi.org/10.1109/IIKI.2016.39

  139. Borkowski, M., Schulte, S., Hochreiner, C.: Predicting cloud resource utilization. In: Proc. - 9th IEEE/ACM Int. Conf. Util. Cloud Comput. UCC 2016. 37–42 (2016). https://doi.org/10.1145/2996890.2996907

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: SK: Study conception and design, Data collection, Analysis and interpretation of results, Draft manuscript preparation. AS: Supervision

Corresponding author

Correspondence to Shobhana Kashyap.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, S., Singh, A. Prediction-based scheduling techniques for cloud data center’s workload: a systematic review. Cluster Comput 26, 3209–3235 (2023). https://doi.org/10.1007/s10586-023-04024-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04024-8

Keywords

Navigation