Skip to main content
Log in

A knowledge-driven service composition framework for wildfire prediction

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Wildfire prediction has drawn a lot of researchers’ interest, but still presents a computational difficulty since it necessitates real-time data collected from several distributed data sources. Furthermore, because environmental Web services have, now, access to a wider range of environmental data sources, services might be functionally similar but of varying quality. In this paper, we propose a knowledge-driven framework for service composition that is based on a layered architecture. Based on these layers, the proposed framework aims to select the optimal service instances participating in a service composition schema, through a modular ontology to infer the quality of data sources (QoDS) and an outranking approach. Moreover, it aims to executing the service composition schema at runtime by dynamically readjusting both the service composition schema and the service instances via a machine learning-based service composition approach. The conducted experiments showed that the proposed framework enables (i) a reasonable reasoning time for assessing the data sources’ quality, (ii) a decrease in the ELECTRE III MCDM method’s execution time achieved by combining the skyline and \(\alpha \)-dominance methods, (iii) dynamic generation of the most relevant service composition schema with the appropriate wildfire risk classes, and (iv) a high prediction accuracy using our proposed outranking approach compared to the randomly selected services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Notes

  1. https://sites.google.com/view/predicat/predicat

  2. https://data.chc.ucsb.edu/products/CHIRPS-2.0

References

  1. Taktak, H., Boukadi, K., Mrissa, M., Guégan, C.G., Gargouri, F.: A model-driven approach for semantic data-as-a-service generation. In: 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 245–250 (2020). IEEE

  2. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings 17th International Conference on Data Engineering, pp. 421–430 (2001). https://doi.org/10.1109/ICDE.2001.914855

  3. Roy, B.: The outranking approach and the foundations of ELECTRE methods. In: Broy, M., Denert, E. (eds.) Readings in Multiple Criteria Decision Aid, pp. 155–183. Springer, France (1990)

    Chapter  Google Scholar 

  4. Kurniawan, K., Ekaputra, F.J., Aryan, P.R.: Semantic service description and compositions: A systematic literature review. In: 2018 2nd International Conference on Informatics and Computational Sciences (ICICoS), pp. 1–6 (2018). IEEE

  5. Rodriguez-Mier, P., Pedrinaci, C., Lama, M., Mucientes, M.: An integrated semantic web service discovery and composition framework. IEEE Trans. Serv. Comput. 9(4), 537–550 (2015)

    Article  Google Scholar 

  6. Lamine, R.B., Jemaa, R.B., Amor, I.A.B.: Graph planning based composition for adaptable semantic web services. Procedia Comput. Sci. 112, 358–368 (2017)

    Article  Google Scholar 

  7. Gupta, I.K., Kumar, J., Rai, P.: Optimization to quality-of-service-driven web service composition using modified genetic algorithm. In: 2015 International Conference on Computer, Communication and Control (ic4), pp. 1–6 (2015). IEEE

  8. Batini, C., Scannapieco, M.: Data and Information Quality: Dimensions. Principles and Techniques, Springer, London (2018)

    Google Scholar 

  9. Ellefi, M.B., Bellahsene, Z., Breslin, J.G., Demidova, E., Dietze, S., Szymanski, J., Todorov, K.: RDF dataset profiling: a survey of features, methods, vocabularies and applications. Semantic Web 9(5), 677–705 (2018). https://doi.org/10.3233/SW-180294

    Article  Google Scholar 

  10. Dorfeshan, Y., Tavakkoli-Moghaddam, R., Jolai, F., Mousavi, S.: A new data-driven and knowledge-driven multi-criteria decision-making method. J. AI Data Min. 9(4), 543–554 (2021)

    Google Scholar 

  11. Zou, H., Zhang, L., Yang, F., Zhao, Y.: A web service composition algorithmic method based on topsis supporting multiple decision-makers. In: 2010 6th World Congress on Services, pp. 158–159 (2010). IEEE

  12. Zulqarnain, R., Saeed, M., Ahmad, N., Dayan, F., Ahmad, B.: Application of TOPSIS method for decision making. Int. J. Sci. Res. 2, 7 (2020)

    Google Scholar 

  13. Jauhari, A., Mufarroha, F.A., Wijarnoko, M.A., Maulana, M.T.I., AI-Haq, A.T.B., Linawati, L.: Smart mobile application for decision support systems on determination of resident in dormitory. J. Ilmiah Kursor 3, 10 (2020)

    Google Scholar 

  14. Khan, S., Purohit, L.: An Integrated Methodology of Ranking Based on PROMETHEE-CRITIC and TOPSIS-CRITIC In Web Service Domain. In: 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT), pp. 335–340 (2022). IEEE

  15. Youssef, A.E.: An integrated MCDM approach for cloud service selection based on TOPSIS and BWM. IEEE Access 8, 71851–71865 (2020). https://doi.org/10.1109/ACCESS.2020.2987111

    Article  Google Scholar 

  16. Polska, O., Kudermetov, R., Shkarupylo, V.: An approach web service selection by quqality criteria based on sensitivity analysis of MCDM methods. Radio Electron. Comput. Sci. Control 2, 133–143 (2021)

    Article  Google Scholar 

  17. Kumar, R.R., Kumari, B., Kumar, C.: CCS-OSSR: a framework based on hybrid MCDM for optimal service selection and ranking of cloud computing services. Clust. Comput. 24(2), 867–883 (2021)

    Article  Google Scholar 

  18. Serrai, W., Abdelli, A., Mokdad, L., Hammal, Y.: Towards an efficient and a more accurate web service selection using MCDM methods. J. Comput. Sci. 22, 253–267 (2017)

    Article  Google Scholar 

  19. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures. University of California, Irvine (2000)

    Google Scholar 

  20. Albertoni, R., Isaac, A.: Introducing the Data Quality Vocabulary (DQV). Semantic Web (Preprint), pp. 1–17 (2021)

  21. Jayawardene, V., Sadiq, S., Indulska, M.: An analysis of data quality dimensions. (2015)

  22. Batini, C., Scannapieco, M., et al.: Data and Information Quality. Springer International Publishing, Cham (2016)

    Book  Google Scholar 

  23. Frank, M., Walker, J.: User centred methods for measuring the value of open data. J. Commun. Inform. 2, 12 (2016)

    Google Scholar 

  24. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering (1997)

  25. Sure, Y., Staab, S., Studer, R.: On-to-knowledge methodology (otkm). Handbook on Ontologies, 117–132 (2004)

  26. Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: A guide to creating your first ontology. In: Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and (2001)

  27. Gobin, B.A.: An agile methodology for developing ontology modules which can be used to build modular ontologies. In: Proceedings of 2013 IEEE International Conference on Computer Science and Automation Engineering (CSAE 2013) (2013)

  28. Debattista, J., Lange, C., Auer, S.: daQ, an ontology for dataset quality information. In: LDOW (2014)

  29. Albertoni, R., Isaac, A., Guéret, C., Debattista, J., Lee, D., Mihindukulasooriya, N., Zaveri, A.: Data quality vocabulary (DQV). W3C interest group note. World Wide Web Consortium (W3C) (2015)

  30. Maali, F., Erickson, J., Archer, P.: Data catalog vocabulary (DCAT). W3c Recomm. 16, 25 (2014)

    Google Scholar 

  31. Farias-Lóscio, B., Stephan, E.G.: Data on the web best practices: dataset usage vocabulary. W3C Work. Draft 24, 89 (2016)

    Google Scholar 

  32. Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., Zhao, J.: Prov-o: the prov ontology. W3C Work. Draft 89, 4 (2012)

    Google Scholar 

  33. Taktak, H., Boukadi, K., Zouari, F., Ghedira, C., Mrissa, M., Gargouri, F.: Modular Environmental Source Ontology Inferences. Report (2023). https://drive.google.com/file/d/1DSxkvLucrF4LTbvE17BDOLg4GVVCpxl3/view?usp=share_link

  34. Benouaret, K., Benslimane, D., Hadjali, A.: On the use of fuzzy dominance for computing service skyline based on QoS. In: 2011 IEEE International Conference on Web Services, pp. 540–547 (2011). IEEE

  35. Benouaret, K., Benslimane, D., Hadjali, A., Barhamgi, M., Maamar, Z., Sheng, Q.Z.: Web service compositions with fuzzy preferences: a graded dominance relationship-based approach. ACM Trans. Internet Technol. (TOIT) 13(4), 1–33 (2014)

    Article  Google Scholar 

  36. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  37. Taktak, H., Boukadi, K., Guégan, C.G., Mrissa, M., Gargouri, F.: Towards knowledge-driven automatic service composition for wildfire prediction. In: International Conference on Service-Oriented Computing, pp. 408–420 (2020). Springer

  38. Genuer, R., Poggi, J.-M., Tuleau-Malot, C.: Variable selection using random forests. Pattern Recognit. Lett. 31(14), 2225–2236 (2010)

    Article  ADS  Google Scholar 

  39. Agency, A.E.S.: Fire danger ratings. Report, ACT Government (2009). https://esa.act.gov.au/sites/default/files/wp-content/uploads/fire-danger-ratings.pdf

  40. Wauthier, F., Jordan, M., Jojic, N.: Efficient ranking from pairwise comparisons. In: International Conference on Machine Learning, pp. 109–117 (2013). PMLR

  41. Forestal, R.L., Pi, S.-M.: A hybrid approach based on ELECTRE III-genetic algorithm and TOPSIS method for selection of optimal COVID-19 vaccines. J. Multi-Criteria Decis. Anal. 29(1–2), 80–91 (2022)

    Article  Google Scholar 

  42. Grati, R., Boukadi, K., Ben-Abdallah, H.: Qos based resource allocation and service selection in the cloud. In: 2014 11th International Conference on e-Business (ICE-B), pp. 249–256 (2014). IEEE

  43. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for qos-based web service composition. In: Proceedings of the 19th International Conference on World Wide Web, pp. 11–20 (2010)

Download references

Acknowledgments

The authors acknowledge the European Commission for funding the InnoRenew CoE project (Grant Agreement #739574) under the Horizon2020 Widespread-Teaming program and the Republic of Slovenia (Investment funding of the Republic of Slovenia and the European Union of the European regional Development Fund).

Funding

This work was financially supported by the “PHC Utique” program of the French Ministry of Foreign Affairs and Ministry of higher education and research and the Tunisian Ministry of higher education and scientific research in the CMCU Project Number 17G1122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hela Taktak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taktak, H., Boukadi, K., Zouari, F. et al. A knowledge-driven service composition framework for wildfire prediction. Cluster Comput 27, 977–996 (2024). https://doi.org/10.1007/s10586-023-03997-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-03997-w

Keywords

Navigation