Skip to main content
Log in

An ECC processor for IoT using Edwards curves and DFT modular multiplication

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In this work, an elliptic curve cryptography (ECC) processor is proposed to be used in the Internet of Things (IoT) devices. The ECC processor is designed based on Edwards curves defined over the finite prime fields \(GF((2^{13}-1)^{13})\), \(GF((2^{17}-1)^{17})\), and \(GF((2^{19}-1)^{19})\). Modular multiplication in the proposed ECC processor is carried out in the frequency domain using a Discrete Fourier Transform (DFT) modular multiplier. Different base field adders and base field multipliers are designed and utilized in the design of the DFT modular multiplier. The ECC processor is described and functionally tested using the VHDL language and the simulation tool in the Xilinx ISE14.2. Furthermore, the ECC processor is synthesized using the synthesis tool in the Xilinx ISE14.2, targeting the Virtex-5 FPGA family. Our synthesis results show that the proposed ECC processor achieves higher speed with minor area penalty compared to the similar work in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

None.

Code availability

None.

References

  1. Morales-Sandoval, M., Flores, L.A.R., Cumplido, R., Garcia-Hernandez, J.J., Feregrino, C., Algredo, I.: A compact fpga-based accelerator for curve-based cryptography in wireless sensor networks. J. Sens. 2021, 8860413 (2021). https://doi.org/10.1155/2021/8860413

    Article  Google Scholar 

  2. Mosenia, A., Jha, N.K.: A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Topics Comput. 5(4), 586–602 (2017). https://doi.org/10.1109/TETC.2016.2606384

    Article  Google Scholar 

  3. Joglekar, J., Bhutani, S., Patel, N., Soman, P.: Lightweight elliptical curve cryptography (ecc) for data integrity and user authentication in smart transportation iot system. In: Karrupusamy, P. (ed.) Sustainable Communication Networks and Application, pp. 270–278. Springer, Berlin (2020)

    Chapter  Google Scholar 

  4. Hammi, B., Fayad, A., Khatoun, R., Zeadally, S., Begriche, Y.: A lightweight ecc-based authentication scheme for internet of things (iot). IEEE Syst. J. 14(3), 3440–3450 (2020). https://doi.org/10.1109/JSYST.2020.2970167

    Article  Google Scholar 

  5. Di Matteo, S., Baldanzi, L., Crocetti, L., Nannipieri, P., Fanucci, L., Saponara, S.: Secure elliptic curve crypto-processor for real-time iot applications. Energies (2021). https://doi.org/10.3390/en14154676

    Article  Google Scholar 

  6. Dhillon, P.K., Kalra, S.: Elliptic curve cryptography for real time embedded systems in iot networks. In: 2016 5th International conference on wireless networks and embedded systems (WECON), pp. 1–6 (2016). https://doi.org/10.1109/WECON.2016.7993462

  7. Liu, Z., Seo, H.: Iot-nums: evaluating nums elliptic curve cryptography for iot platforms. IEEE Trans. Inf. Forensics Sec. 14(3), 720–729 (2019). https://doi.org/10.1109/TIFS.2018.2856123

    Article  Google Scholar 

  8. Manifavas, C., Hatzivasilis, G., Fysarakis, K., Rantos, K.: Lightweight cryptography for embedded systems—a comparative analysis. In: Data Privacy Management and Autonomous Spontaneous Security, pp. 333–349 (2014)

  9. Meiklejohn, S., Erway, C.C., Küpçü, A., Hinkle, T., Lysyanskaya, A.: \(\{\)ZKPDL\(\}\): A \(\{\)Language-Based\(\}\) system for efficient \(\{\)Zero-Knowledge\(\}\) proofs and electronic cash. In: USENIX Security Symposium (2010)

  10. Yeh, L.-Y., Chen, P.-J., Pai, C.-C., Liu, T.-T.: An energy-efficient dual-field elliptic curve cryptography processor for internet of things applications. IEEE Trans. Circuits Syst. II 67(9), 1614–1618 (2020). https://doi.org/10.1109/TCSII.2020.3012448

    Article  Google Scholar 

  11. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) Advances in Cryptology—CRYPTO ’85 Proceedings, pp. 417–426. Springer, Berlin, Heidelberg (1986)

    Chapter  Google Scholar 

  12. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bos, J.W., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for cryptography: an efficiency and security analysis. J. Cryptograph. Eng. 6(4), 259–286 (2016). https://doi.org/10.1007/s13389-015-0097-y

    Article  Google Scholar 

  14. Baktir, S., Kumar, S.S., Paar, C., Sunar, B.: A state-of-the-art elliptic curve cryptographic processor operating in the frequency domain. MONET 12(4), 259–270 (2007). https://doi.org/10.1007/s11036-007-0022-4

    Article  Google Scholar 

  15. Bos, J., Kaihara, M., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: On the security of 1024-bit rsa and 160-bit elliptic curve cryptography. Cryptology ePrint Archive, Report 2009/389 (2009)

  16. Kocaogullar, C., Yıldırım, K., Sakaogulları, M.A., Küpçü, A.: Basgit: A secure digital epassport alternative. In: ISCTURKEY (2021)

  17. Taheri-Boshrooyeh, S., Küpçü, A., Özkasap, Ö.: Security and privacy of distributed online social networks. In: 2015 IEEE 35th international conference on distributed computing systems workshops, pp. 112–119 (2015). IEEE

  18. Yüksel, B., Küpçü, A., Özkasap, Ö.: Research issues for privacy and security of electronic health services. Future Gener. Comput. Syst. 68, 1–13 (2017)

    Article  Google Scholar 

  19. Edwards, H.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44, 393–423 (2007). https://doi.org/10.1090/S0273-0979-07-01153-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Abarzúa, R., Martínez, S., Mendoza, V., Thériault, N.: Same value analysis on Edwards curves. J. Cryptograph. Eng. 10(1), 27–48 (2020). https://doi.org/10.1007/s13389-019-00206-6

    Article  Google Scholar 

  21. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: PKC, pp. 207–228 (2006)

  22. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-curve points indistinguishable from uniform random strings. In: ACM CCS, pp. 967–980 (2013)

  23. Hamburg, M.: Ed448-goldilocks, a new elliptic curve. IACR Cryptol. ePrint Arch. 2015, 625 (2015)

    Google Scholar 

  24. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order elliptic curves. In: EUROCRYPT, pp. 403–428 (2016)

  25. Martínez, S., Sadornil, D., Tena, J., Tomàs, R., Valls, M.: On edwards curves and zvp-attacks. Appl. Algebra Eng. Commun. Comput. 24(6), 507–517 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bos, J.W., Halderman, J.A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E.: Elliptic curve cryptography in practice. In: Financial Cryptography and Data Security, pp. 157–175 (2014)

  27. Faugère, J.-C., Perret, L., Petit, C., Renault, G.: Improving the complexity of index calculus algorithms in elliptic curves over binary fields. In: EUROCRYPT, pp. 27–44 (2012)

  28. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: CHES, pp. 251–261 (2001)

  29. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19(90), 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schönhage, A., Strassen, V.: Schnelle multiplikation großer zahlen. Computing 7(3), 281–292 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Baktır, S., Sunar, B.: Finite field polynomial multiplication in the frequency domain with application to elliptic curve cryptography. In: ISCIS, pp. 991–1001 (2006)

  33. Chen, J., Liu, P., Zhao, H., Zhang, C., Zhang, J.: Analytical studying the axial performance of fully encapsulated rock bolts. Eng. Failure Anal. 128, 105580 (2021). https://doi.org/10.1016/j.engfailanal.2021.105580

    Article  Google Scholar 

  34. Wu, S.-L., Al-Khaleel, M.D.: Optimized waveform relaxation methods for rc circuits: discrete case. ESAIM M2AN 51(1), 209–223 (2017). https://doi.org/10.1051/m2an/2016061

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, J., Li, D.: Numerical simulation of fully encapsulated rock bolts with a tri-linear constitutive relation. Tunn. Undergr. Space Technol. 120, 104265 (2022). https://doi.org/10.1016/j.tust.2021.104265

    Article  Google Scholar 

  36. Wu, S.-L., Al-Khaleel, M.D.: Semi-discrete Schwarz waveform relaxation algorithms for reaction diffusion equations. BIT Numer. Math. 54(3), 831–866 (2014). https://doi.org/10.1007/s10543-014-0475-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT, pp. 29–50 (2007)

  38. Mentens, N., Batina, L., Baktir, S.: An elliptic curve cryptographic processor using edwards curves and the number theoretic transform. In: BalkanCryptSec, pp. 94–102 (2014). https://doi.org/10.1007/978-3-319-21356-9_7

  39. Verri Lucca, A., Mariano Sborz, G.A., Leithardt, V.R.Q., Beko, M., Albenes Zeferino, C., Parreira, W.D.: A review of techniques for implementing elliptic curve point multiplication on hardware. J. Sens. Actuator Netw. 10(1), 3 (2021)

    Article  Google Scholar 

  40. Absar, S., Hossain, M., Kong, Y.: Efficient hardware implementation of modular arithmetic and group operation over prime field. Internet Things Cloud Comput. 7(1), 31–38 (2019). https://doi.org/10.11648/j.iotcc.20190701.15

    Article  Google Scholar 

  41. Ding, J., Li, S., Gu, Z.: High-speed ecc processor over nist prime fields applied with toom-cook multiplication. IEEE Trans. Circuits Syst. I 66(3), 1003–1016 (2019). https://doi.org/10.1109/TCSI.2018.2878598

    Article  Google Scholar 

  42. Hossain, M.R., Hossain, M.S.: Efficient fpga implementation of modular arithmetic for elliptic curve cryptography. In: 2019 International conference on electrical, computer and communication engineering (ECCE), pp. 1–6 (2019). https://doi.org/10.1109/ECACE.2019.8679419

  43. Javeed, K., Wang, X.: Low latency flexible fpga implementation of point multiplication on elliptic curves over gf(p). I. J. Circuit Theory Appl. 45(2), 214–228 (2017)

    Article  Google Scholar 

  44. Kudithi, T., Sakthivel, R.: An efficient hardware implementation of the elliptic curve cryptographic processor over prime field. Int. J. Circuit Theory Appl. 48(8), 1256–1273 (2020)

    Article  Google Scholar 

  45. Hu, X., Zheng, X., Zhang, S., Li, W., Cai, S., Xiong, X.: A high-performance elliptic curve cryptographic processor of sm2 over gf(p). Electronics 8, 431 (2019). https://doi.org/10.3390/electronics8040431

    Article  Google Scholar 

  46. Bailey, D.V., Paar, C.: Optimal extension fields for fast arithmetic in public-key algorithms. In: CRYPTO, pp. 472–485 (1998)

  47. Bailey, D.V., Paar, C.: Efficient arithmetic in finite field extensions with application in elliptic curve cryptography. J. Cryptol. 14(3), 153–176 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Awaludin, A.M., Larasati, H.T., Kim, H.: High-speed and unified ecc processor for generic weierstrass curves over gf(p) on fpga. Sensors 21(4), 1251 (2021)

    Article  Google Scholar 

  49. Al-Khaleel, O., Baktır, S., Küpçü, A.: Fpga implementation of an ecc processor using edwards curves and dft modular multiplication. In: 2021 12th International conference on information and communication systems (ICICS), pp. 344–351 (2021). https://doi.org/10.1109/ICICS52457.2021.9464611

  50. Esiner, E., Küpçü, A., Özkasap, Ö.: Analysis and optimization on flexdpdp: A practical solution for dynamic provable data possession. In: International conference on intelligent cloud computing, pp. 65–83 (2014). Springer

  51. Esiner, E., Kachkeev, A., Braunfeld, S., Küpçü, A., Özkasap, Ö.: Flexdpdp: flexlist-based optimized dynamic provable data possession. ACM Trans. Storage (TOS) 12(4), 1–44 (2016)

    Article  Google Scholar 

  52. Etemad, M., Küpçü, A.: Generic dynamic data outsourcing framework for integrity verification. ACM Comput. Surv. (CSUR) 53(1), 1–32 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Alptekin Küpçü acknowledges support from TÜBİTAK, the Scientific and Technological Research Council of Turkey, project 119E088. Osama Al-Khaleel acknowledges support from JUST-Deanship of Research, project 20190201. Osama Al-Khaleel acknowledges the support from XILINX University Program to Jordan University of Science and Technology (JUST).

Funding

Alptekin Küpçü acknowledges support from TÜBİTAK, the Scientific and Technological Research Council of Turkey, project 119E088. Osama Al-Khaleel acknowledges support from JUST-Deanship of Research, project 20190201.

Author information

Authors and Affiliations

Authors

Contributions

All authors have been personally and actively involved in substantial work leading to the paper, and will take public responsibility for its content.

Corresponding author

Correspondence to Osama Al-Khaleel.

Ethics declarations

Conflict of interest

All authors declare tha they have no conflict of interest.

Ethical approval

The work presented in this paper is a valuable extension to our work presented in 12th International Conference on Information and Communication Systems (ICICS2021). In this journal version, we extend our proposal to cover higher security levels, modify our solution to also work over the finite prime fields \(GF((2^{17}-1)^{17})\) and \(GF((2^{19}-1)^{19})\) in addition to \(GF((2^{13}-1)^{13})\), and perform and report extended. performance and area measurements. The paper is not currently being considered for publication elsewhere. The paper reflects the authors’ own research and analysis in a truthful and complete manner. The results are appropriately placed in the context of prior and existing research. All sources used are properly disclosed (correct citation).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Khaleel, O., Baktir, S. & Küpçü, A. An ECC processor for IoT using Edwards curves and DFT modular multiplication. Cluster Comput 26, 1063–1075 (2023). https://doi.org/10.1007/s10586-022-03611-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03611-5

Keywords

Navigation