Skip to main content

Advertisement

Log in

Task scheduling algorithms for energy optimization in cloud environment: a comprehensive review

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Cloud computing is very popular because of its unique features such as scalability, elasticity, on-demand service, and security. A large number of tasks are performed simultaneously in a cloud system, and an effective task scheduler is needed to achieve better efficiency of the cloud system. Task scheduling algorithm should determine a sequence of execution of tasks to meet the requirements of the user in terms of Quality of Service (QoS) factors (e.g., execution time and cost). The key issue in recent task scheduling is energy efficiency since it reduces cost and satisfies the standard parameter in green computing. The most important aim of this paper is a comparative analysis of 67 scheduling methods in the cloud system to minimize energy consumption during task scheduling. This work allows the reader to choose the right scheduling algorithm that optimizes energy properly, given the existing problems and limitations. In addition, we have divided the algorithms into three categories: heuristic-based task scheduling, meta-heuristic-based task scheduling, and other task scheduling algorithms. The advantages and disadvantages of the proposed algorithms are also described, and finally, future research areas and further developments in this field are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Zhou, Z., Zhao, L.: Cloud computing model for big data processing and performance optimization of multimedia communication. Comput. Commun. 160, 326–332 (2020)

    Google Scholar 

  2. Mthunzi, S.N., Benkhelifa, E., Bosakowski, T., Guegan, C.G., Barhamgi, M.: Cloud computing security taxonomy: from an atomistic to a holistic view. Futur. Gener. Comput. Syst. 107, 620–644 (2020)

    Google Scholar 

  3. Wang, M., Zhang, Q.: Optimized data storage algorithm of IoT based on cloud computing in distributed system. Comput. Commun. 157, 124–131 (2020)

    Google Scholar 

  4. Sanaj, M.S., Joe Prathap, P.M.: An efficient approach to the map-reduce framework and genetic algorithm based whale optimization algorithm for task scheduling in cloud computing environment. Mater. Today: Proc. 37, 3199–3208 (2020)

    Google Scholar 

  5. Hosseinzadeh, M., Ghafour, M.Y., Hama, H.K., Vo, B., Khoshnevis, A.: Multi-objective task and workflow scheduling approaches in cloud computing: a comprehensive review. J. Grid Comput. 18, 327–356 (2020)

    Google Scholar 

  6. Zhang, L., Zhou, L., Salah, A.: Efficient scientific workflow scheduling for deadline-constrained parallel tasks in cloud computing environments. Inf. Sci. 531, 31–46 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Pradhan, A., Bisoy, S.K., Das, A.: A survey on PSO based meta-heuristic scheduling mechanism in cloud computing environment. J. King Saud Univ. Comput. Inf. Sci. (2021). https://doi.org/10.1016/j.jksuci.2021.01.003

    Article  Google Scholar 

  8. Lavanya, M., Shanthi, B., Saravanan, S.: Multi objective task scheduling algorithm based on SLA and processing time suitable for cloud environment. Comput. Commun. 151, 183–195 (2020)

    Google Scholar 

  9. Mansouri, N., Mohammad Hasani Zade, B., Javidi, M.M.: Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory. Comput. Ind. Eng. 130, 597–633 (2019)

    Google Scholar 

  10. Han, P., Du, C., Chen, J., Ling, F., Du, X.: Cost and makespan scheduling of workflows in clouds using list multiobjective optimization technique. J. Syst. Architect. 112, 1–34 (2021)

    Google Scholar 

  11. Abdel-Basset, M., El-Shahat, D., Deb, K., Abouhawwash, M.: Energy-aware whale optimization algorithm for real-time task scheduling in multiprocessor systems. Appl. Soft Comput. 93, 1–30 (2020)

    Google Scholar 

  12. Jyoti, A., Shrimali, M., Tiwari, S., Singh, H.P.: Cloud computing using load balancing and service broker policy for IT service: a taxonomy and survey. J. Ambient Intell. Hum. Comput. 11, 4785 (2019)

    Google Scholar 

  13. Saha, S., Habib, M.A., Adhikary, T., Razzaque, M.A., Rahman, M.M., Altaf, M., Hassan, M.M.: Quality-of-experience-aware incentive mechanism for workers in mobile device cloud. IEEE Access 9, 95162–95179 (2021)

    Google Scholar 

  14. Balasubramanian, V., Karmouch, A.: An infrastructure as a service for mobile ad-hoc cloud. In: 2017 IEEE 7th Annual Computing and Communication Workshop and Conference, pp. 1–7 (2017).

  15. Abd Elaziz, M., Abualigah, L., Attiya, I.: Advanced optimization technique for scheduling IoT tasks in cloud-fog computing environments. Futur. Gener. Comput. Syst. 124, 142–154 (2021)

    Google Scholar 

  16. Firouzi, F., Farahani, B., Marinšek, A.: The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things (IoT). Information Systems (2021).

  17. Elazhary, H.: Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging computing paradigms: disambiguation and research directions. J. Netw. Comput. Appl. 128, 105–140 (2019)

    Google Scholar 

  18. Mell, P., Grance, T.: The NIST definition of cloud computing. Natl. Inst. Std. Technol. 53, 1–7 (2011)

    Google Scholar 

  19. Qureshi, A., Sharma, A.: Cloud computing: the new world of technology. In: Proceedings of Second International Conference on Smart Energy and Communication, pp. 55–60 (2021)

  20. Carlin, S., Curran, K.: Cloud computing technologies. Int. J. Cloud Comput. Serv. Sci. 1, 59–65 (2012)

    Google Scholar 

  21. Kalagiakos, P., Karampelas, P.: Cloud computing learning. In: International Conference on Application of Information and Communication Technologies (2011)

  22. Mansouri, N., Ghafari, R., Mohammad Hasani Zade, B.: Cloud computing simulators: a comprehensive review. Simul. Model. Pract. Theory 104, 1–101 (2020)

    Google Scholar 

  23. Wilczyński, A., Kołodziej, J.: Modelling and simulation of security-aware task scheduling in cloud computing based on Blockchain technology. Simul. Model. Pract. Theory 99, 1–45 (2020)

    Google Scholar 

  24. Guevara, C., da Fonseca, L.S.: Task scheduling in cloud-fog computing systems. Peer-to-Peer Netw. Appl. 14, 962–977 (2021)

    Google Scholar 

  25. Tong, Z., Chen, H., Deng, X., Li, K., Li, K.: A novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimization. Soft Comput (2019). https://doi.org/10.1007/s00500-018-3657-0

    Article  Google Scholar 

  26. Wang, M., Li, Y., Zhang, L., Pei, F.: Research on intelligent workshop resource scheduling method based on improved NSGA-II algorithm. Robot. Comput. Integr. Manuf. 71, 102–141 (2021)

    Google Scholar 

  27. Dong, T., Xue, F., Xiao, C.H., Zhang, J.: Workflow scheduling based on deep reinforcement learning in the cloud environment. J. Ambient Intell. Hum. Comput. 12, 10823 (2020)

    Google Scholar 

  28. Zhou, X., Wang, P., Liu, C.H., Yue, T., Liu, Y., Song, C., Lu, K., Yin, O.: UniFuzz: Optimizing Distributed Fuzzing via Dynamic Centralized Task Scheduling. Computer Science - Cryptography and Security, pp. 1–14 (2020)

  29. Taheri, G., Khonsari, A., Entezari-Maleki, R., Sousa, L.: A hybrid algorithm for task scheduling on heterogeneous multiprocessor embedded systems. Appl. Soft Comput. 91, 1–26 (2020)

    Google Scholar 

  30. Mathew, T., Sekaran, K.C.H., Jose, J.: Study and analysis of various task scheduling algorithms in the cloud computing environment. International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 658–664 (2014)

  31. Vaishla, N., Singh, A.: Competitive study of various task-scheduling algorithm in cloud computing. Adv. Commun. Comput. Technol. (2020). https://doi.org/10.1007/978-981-15-5341-7_79

    Article  Google Scholar 

  32. Sulaiman M, Halim Z, Waqas M, Aydın D (2021) A hybrid list-based task scheduling scheme for heterogeneous computing. The Journal of Supercomputing.

  33. Kalra, M., Singh, S.: A review of metaheuristic scheduling techniques in cloud computing. Egyptian Informatics Journal 16, 275–295 (2015)

    Google Scholar 

  34. Singh, P., Dutta, M., Aggarwal, N.: A review of task scheduling based on meta-heuristics approach in cloud computing. Knowl. Inf. Syst. 52, 1–51 (2017)

    Google Scholar 

  35. Hussain, M., Wei, L., Lakhan, A., Wal, S., Ali, S., Hussain, A.: Energy and performance-efficient task scheduling in heterogeneous virtualized cloud computing. Sustain. Comput. 30, 100–517 (2021)

    Google Scholar 

  36. Moisan, F., Bosseboeuf, D.: Energy efficiency: a recipe for Success. World Energy Council, London, UK, Technical Report (2010)

  37. Khan, A.A., Zakarya, M., Rahman, I.U., Khan, R., Buyya, R. HeporCloud: An energy and performance efficient resource orchestrator for hybrid heterogeneous cloud computing environments. Journal of Network and Computer Applications 173 (2021)

  38. Mc Donnell, N., Howley, E., Duggan, J.: Dynamic virtual machine consolidation using a multi-agent system to optimise energy efficiency in cloud computing. Futur. Gener. Comput. Syst. 108, 288–301 (2020)

    Google Scholar 

  39. Gu, Y., Budati, C.: Energy-aware workflow scheduling and /optimization in clouds using bat algorithm. Futur. Gener. Comput. Syst. 113, 106–112 (2020)

    Google Scholar 

  40. Khan, A.A., Zakarya, M., Khan, R., Rahman, I.U., Khan, M., Khan, A., ur R,: An energy, performance efficient resource consolidation scheme for heterogeneous cloud datacenters. J. Netw. Comput. Appl. 150, 1–37 (2020)

    Google Scholar 

  41. Uchechukwu, A., Li, K., Shen, Y.: Energy consumption in cloud computing data centers. International Journal of Cloud Computing and Services Science 3, 31–48 (2014)

    Google Scholar 

  42. Jangiti S, VS SS (2020) EMC2: Energy-efficient and multi-resource- fairness virtual machine consolidation in cloud data centres. Sustainable Computing: Informatics and Systems 27.

  43. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.: A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv. Comput. 82, 47–111 (2011)

    Google Scholar 

  44. Sharma, Y., Javadi, B., Si, W., Sun, D.: Reliability and energy efficiency in cloud computing systems: Survey and taxonomy. J. Netw. Comput. Appl. 74, 66–85 (2016)

    Google Scholar 

  45. Hamzaoui, I., Duthil, B., Courboulay, V., Medromi, H.: A survey on the current challenges of energy-efficient cloud resources management. SN Computer Science 1, 1–28 (2020)

    Google Scholar 

  46. Haseeb, K., Lee, S., Jeon, G.: EBDS: An energy-efficient big data-based secure framework using Internet of Things for green environment. Environ. Technol. Innov. 20, 1–12 (2020)

    Google Scholar 

  47. You, X., Lv, X., Zhao, Z., Han, J., Ren, X.: A Survey and taxonomy on energy-aware data management strategies in cloud environment. IEEE Access 8, 94279–94293 (2020)

    Google Scholar 

  48. Mohammad Hasani Zade, B., Mansouri, N., Javidi, M.M.: SAEA: A security-aware and energy-aware task scheduling strategy by Parallel Squirrel Search Algorithm in cloud environment. Expert Syst. Appl. 176, 114915 (2021)

    Google Scholar 

  49. Noorian Talouki, R., Hosseini Shirvani, M., Motameni, H.: A heuristic-based task scheduling algorithm for scientific workflows in heterogeneous cloud computing platforms. J. King Saud Univ. (2021). https://doi.org/10.1016/j.jksuci.2021.05.011

    Article  Google Scholar 

  50. Pol SS, Singh A (2021) Task Scheduling Algorithms in Cloud Computing: A Survey. In: 2021 2nd International Conference on Secure Cyber Computing and Communications 244-249.

  51. Kumar, M., Sharma, S.C., Goel, A., Singh, S.P.: A comprehensive survey for scheduling techniques in cloud computing. J. Netw. Comput. Appl. 143, 1–33 (2019)

    Google Scholar 

  52. Singh, H., Tyagi, S., Kumar, P., et al.: Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: analysis, performance evaluation, and future directions. Simul. Model. Pract. Theory 111, 102353 (2021)

    Google Scholar 

  53. Ahari, V., Venkatesan, R., Latha, D.P.P.: A survey on task scheduling using intelligent water drops algorithm in cloud computing. In: 2019 3rd International Conference on Trends in Electronics and Informatics, pp. 39-45 (2019)

  54. Hosseini, H.S.: Problem solving by intelligent water drops. In: 2007 IEEE Congress on Evolutionary Computation, pp. 3226–3231 (2007)

  55. Milan, S.T., Rajabion, L., Ranjbar, H., Navimipour, N.J.: Nature inspired meta-heuristic algorithms for solving the load-balancing problem in cloud environments. Comput. Oper. Res. 110, 159–187 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Houssein, E.H., Gad, A.G., Wazery, Y.M., Suganthan, P.N.: Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends. Swarm Evol. Comput. 62, 1–41 (2021)

    Google Scholar 

  57. Natesan, G., Pradeep, K., Ali, L.J.: Scheduling of task in cloud environment using optimization algorithms: survey. In: 2019 International Conference on Intelligent Computing and Control Systems, pp. 417–424 (2019)

  58. Konjaang, J.K., Xu, L.: Meta-heuristic approaches for effective scheduling in infrastructure as a service cloud: a systematic review. J. Netw. Syst. Manag. 29, 15 (2021)

    Google Scholar 

  59. Kitchenham, B., Pearl Brereton, O., Budgen, D., et al.: Systematic literature reviews in software engineering: a systematic literature review. Inf. Softw. Technol. 51, 7–15 (2009)

    Google Scholar 

  60. Singh, S., Chana, I.: A survey on resource scheduling in cloud computing: issues and challenges. J. Grid Comput. 14, 217–264 (2016)

    Google Scholar 

  61. Jena, R.K.: Energy efficient task scheduling in cloud environment. Energy Proc. 141, 222–227 (2017)

    Google Scholar 

  62. De Castro, L.N., Von Zuben, F.J.: The clonal selection algorithm with engineering applications. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 36–39 (2000)

  63. Lin, W., Wang, W., Wu, W., Pang, X., Liu, B., Zhang, Y.: A heuristic task scheduling algorithm based on server power efficiency model in cloud environments. Sustain. Comput. 20, 56–65 (2018)

    Google Scholar 

  64. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic mapping of a class of independent tasks onto heterogeneous computing systems. J. Parallel Distrib. Comput. 59, 107–131 (1999)

    Google Scholar 

  65. Nagle, J.: On packet switches with infinite storage. IEEE Trans. Commun. 35, 435–438 (1987)

    Google Scholar 

  66. Bey, K.B., Benhammadi, F., Benaissa, R.: Balancing heuristic for independent task scheduling in cloud computing. In: 2015 12th International Symposium on Programming and Systems, pp. 1–6 (2015)

  67. Ding, D., Fan, X., Zhao, Y., Kang, K., Yin, Q., Zeng, J.: Q-learning based dynamic task scheduling for energy-efficient cloud computing. Futur. Gener. Comput. Syst. 108, 361–371 (2020)

    Google Scholar 

  68. Cui, D., Peng, Z., Lin, W.: A reinforcement learning-based mixed job scheduler scheme for grid or IaaS cloud. IEEE Transactions on Cloud Computing 8(4), 1030–1039 (2017)

    Google Scholar 

  69. Safari, M., Khorsand, R.: Energy-aware scheduling algorithm for time-constrained workflow tasks in DVFS-enabled cloud environment. Simul. Model. Pract. Theory 87, 311–326 (2018)

    Google Scholar 

  70. Gonzalez, R., Gordon, B.M., Horowitz, M.A.: Supply and threshold voltage scaling for low power CMOS. IEEE J. Solid-State Circuits 32, 1210–1216 (1997)

    Google Scholar 

  71. Semeraro, G., Magklis, G., Balasubramonian, R., Albonesi, D.H., Dwarkadas, S., Scott, M.L.: Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling. In: Proceedings Eighth International Symposium on High Performance Computer Architecture, pp. 29–40 (2002)

  72. Le Sueur, E., Heiser, G.: Dynamic voltage and frequency scaling: the laws of diminishing returns. In: Proceedings of the 2010 International Conference on Power Aware Computing and Systems, pp. 1–8 (2010)

  73. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41, 23–50 (2011)

    Google Scholar 

  74. Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment. J. Grid Comput. 14, 55–74 (2016)

    Google Scholar 

  75. Huang, Q., Su, S., Li, J., Xu, P., Shuang, K., Huang, X.: Enhanced energy-efficient scheduling for parallel applications in cloud. In: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 781–786 (2012)

  76. Wu, C., Wang, L.: A multi-model estimation of distribution algorithm for energy efficient scheduling under cloud computing system. J. Parallel Distrib. Comput. 117, 63–72 (2018)

    Google Scholar 

  77. Lee, Y.C., Zomaya, A.Y.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22, 1374–1381 (2010)

    Google Scholar 

  78. Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y.C., Talbi, E.-G., Zomaya, A.Y., Tuyttens, D.: A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems. J. Parallel Distrib. Comput. 71, 1497–1508 (2011)

    Google Scholar 

  79. Hu, Y., Li, J., He, L.: A reformed task scheduling algorithm for heterogeneous distributed systems with energy consumption constraints. Neural Comput. Appl. 32, 5681–5693 (2020)

    Google Scholar 

  80. Xiao, X., Xie, G., Li, R., Li, K.: Minimizing schedule length of energy consumption constrained parallel applications on heterogeneous distributed systems. In: 2016 IEEE Trustcom/BigDataSE/ISPA 1471-1476 (2016)

  81. Xu, Y., Li, K., Hu, J., Li, K.: A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues. Inf. Sci. 270, 255–287 (2014)

    MathSciNet  MATH  Google Scholar 

  82. Zhang, L., Li, K., Xu, Y., Mei, J., Zhang, F., Li, K.: Maximizing reliability with energy conservation for parallel task scheduling in a heterogeneous cluster. Inf. Sci. 319, 113–131 (2015)

    MathSciNet  Google Scholar 

  83. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13, 260–274 (2002)

    Google Scholar 

  84. Xiao, P., Hu, Z.-G., Zhang, Y.-P.: An energy-aware heuristic scheduling for data-intensive workflows in virtualized datacenters. J. Comput. Sci. Technol. 28, 948–961 (2013)

    Google Scholar 

  85. Rizvandi, N.B., Taheri, J., Zomaya, A.Y., Lee, Y.C.: Linear combinations of dvfs-enabled processor frequencies to modify the energy-aware scheduling algorithms. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp. 388-397 (2010)

  86. Baskiyar, S., Abdel-Kader, R.: Energy aware DAG scheduling on heterogeneous systems. Clust. Comput. 13, 373–383 (2010)

    Google Scholar 

  87. Sharma, M., Garg, R.: An artificial neural network based approach for energy efficient task scheduling in cloud data centers. Sustain. Comput. 26, 100373 (2020)

    Google Scholar 

  88. Beloglazovy, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurr. Comput. 24, 1–24 (2011)

    Google Scholar 

  89. Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource provisioning in the cloud. Futur. Gener. Comput. Syst. 28, 155–162 (2012)

    Google Scholar 

  90. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, New York (1992)

    Google Scholar 

  91. Berral, J.L., Goiri, Í., Nou, R., Julià, F., Guitart, J., Gavaldà, R., Torres, J.: Towards energy-aware scheduling in data centers using machine learning. In: Proceedings of the 1st International Conference on energy-Efficient Computing and Networking, pp. 215–224 (2010)

  92. Changtian, Y., Jiong, Y.: Energy-aware genetic algorithms for task scheduling in cloud computing. In: Seventh China Grid Annual Conference, pp. 43–48 (2010)

  93. Nesmachnow, S., Dorronsoro, B., Pecero, J.E., Bouvry, P.: Energy-aware scheduling on multicore heterogeneous grid computing systems. J. Grid Comput. 11, 653–680 (2013)

    Google Scholar 

  94. Kaur, T., Chana, I.: GreenSched: An intelligent energy aware scheduling for deadline-and-budget constrained cloud tasks. Simul. Model. Pract. Theory 82, 55–83 (2018)

    Google Scholar 

  95. Ballabio, D., Consonni, V., Todeschini, R.: The Kohonen and CP-ANN toolbox: A collection of MATLAB modules for Self Organizing Maps and counterpropagation artificial neural networks. Chemom. Intell. Lab. Syst. 98, 115–122 (2009)

    Google Scholar 

  96. Ballabio, D., Vasighi, M.: A MATLAB toolbox for Self Organizing Maps and supervised neural network learning strategies. Chemom. Intell. Lab. Syst. 118, 24–32 (2012)

    Google Scholar 

  97. Shuja, J., Bilal, K., Madani, S.A., Khan, S.U.: Data center energy efficient resource scheduling. Clust. Comput. 17, 1265–1277 (2014)

    Google Scholar 

  98. Wang, Z., Shuang, K., Yang, L., Yang, F.: Energy-aware and revenue-enhancing combinatorial scheduling in virtualized of cloud datacenter. J. Converg. Inf. Technol. 7, 62–70 (2012)

    Google Scholar 

  99. Marahatta, A., Xin, Q., Chi, C., Zhang, F., Liu, Z.: PEFS: AI-driven prediction based energy-aware fault-tolerant scheduling scheme for cloud data center. IEEE Trans. Sustain. Comput. 6, 655 (2020)

    Google Scholar 

  100. Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. ACM SIGARCH Comput. Arch. News 35, 13–23 (2007)

    Google Scholar 

  101. Guo, P., Xue, Z.: Real-time fault-tolerant scheduling algorithm with rearrangement in cloud systems. In: IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference, pp. 399–402 (2017)

  102. Soniya, J., Sujana, J.A.J., Revathi, T.: Dynamic fault tolerant scheduling mechanism for real time tasks in cloud computing. In: International Conference on Electrical, Electronics, and Optimization Techniques, pp. 124–129 (2016)

  103. Yadav, R.K., Kushwaha, V.: An energy preserving and fault tolerant task scheduler in cloud computing. In: International Conference on Advances in Engineering & Technology Research, pp. 1–5 (2014)

  104. Tang, X., Liao, X., Zheng, J., Yang, X.: Energy efficient job scheduling with workload prediction on cloud data center. Clust. Comput. 21, 1581–1593 (2018)

    Google Scholar 

  105. Alexandridis, A.K., Zapranis, A.D.: Wavelet neural networks: a practical guide. Neural Netw. 42, 1–27 (2013)

    MATH  Google Scholar 

  106. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79, 1230–1242 (2013)

    MathSciNet  MATH  Google Scholar 

  107. Wang, Y., Wang, X.: Performance-controlled server consolidation for virtualized data centers with multi-tier applications. Sustain. Comput. 4, 52–65 (2014)

    Google Scholar 

  108. Wu, T., Gu, H., Zhou, J., Wei, T., Liu, X., Chen, M.: Soft error-aware energy-efficient task scheduling for workflow applications in DVFS-enabled cloud. J. Syst. Architect. 84, 12–27 (2017)

    Google Scholar 

  109. Wen, Y.: Energy-aware dynamical hosts and tasks assignment for cloud computing. J. Syst. Softw. 115, 144–156 (2015)

    Google Scholar 

  110. Lang, W., Patel, M.: Energy management for MapReduce clusters. Proc. LDB Endow. 3, 16–58 (2010)

    Google Scholar 

  111. Zhaoa, Q., Xionga, C., Yub, C., Zhanga, C.H., Zhao, X.: A new energy-aware task scheduling method for data-intensive applications in the cloud. J. Netw. Comput. Appl. 59, 14–27 (2015)

    Google Scholar 

  112. Juarez, F., Ejarque, J., Badia, R.M.: Dynamic energy-aware scheduling for parallel task-based application in cloud computing. Futur. Gener. Comput. Syst. 78, 257–271 (2018)

    Google Scholar 

  113. Tejedor, E., Badia, R.: COMP superscalar: bringing GRID superscalar and GCM together. In: 8th IEEE International Symposium on Cluster Computing and the Grid, 2008. CCGRID '08, pp. 185–193 (2008)

  114. Baskiyar, S.: Scheduling DAGs on message passing m-processors systems. IEICE Trans. Inf. Syst. 83, 1497–1507 (2000)

    Google Scholar 

  115. Sobhanayak, S., Turuk, A.: Energy-efficient task scheduling in cloud data center- a temperature aware approach. In: International conference on Electronics, Communication and Aerospace Technology, pp. 1205–1208 (2019)

  116. Kursun, E., Cher, C.H., Buyuktosunoglu, A., Bose, P.: Investigating the effects of task scheduling on thermal behavior. In: Third Workshop on Temperature-Aware Computer Systems, pp. 1–12 (2006)

  117. Baker, B.: A new proof for the first-fit decreasing bin-packing algorithm. J. Algorithms 6, 49–70 (1985)

    MathSciNet  MATH  Google Scholar 

  118. Garg, N., Singh Goraya, M.: Task deadline-aware energy-efficient scheduling model for a virtualized cloud. Arab. J. Sci. Eng. 43, 829–841 (2018)

    Google Scholar 

  119. Lu, Y., Sun, N.: An effective task scheduling algorithm based on dynamic energy management and efficient resource utilization in green cloud computing environment. Clust. Comput. 22, 513–520 (2017)

    Google Scholar 

  120. Zhu, X., Yang, L., Chen, H., Wang, J., Yin, S.H., Liu, X.: Real-time tasks oriented energy-aware scheduling in virtualized clouds. IEEE Trans. Cloud Comput. 2, 168–180 (2014)

    Google Scholar 

  121. Li, J., Su, S., Cheng, X., Song, M., Ma, L., Wang, J.: Cost-efficient coordinated scheduling for leasing cloud resources on hybrid workloads. Parallel Comput. 44, 1–17 (2015)

    MathSciNet  Google Scholar 

  122. Shu, W., Wang, W., Wang, Y.: A novel energy-efficient resource allocation algorithm based on immune clonal optimization for green cloud computing. EURASIP J. Wirel. Commun. Netw. 64, 1–9 (2014)

    Google Scholar 

  123. Yang, X.-S., Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing, pp. 210–214 (2009)

  124. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, pp. 1942–1948 (1995)

  125. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    MathSciNet  MATH  Google Scholar 

  126. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26, 29–41 (1996)

    Google Scholar 

  127. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization, pp. 65–74 (2010)

  128. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report, Erciyes Üniversitesi (2005)

  129. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: International Symposium on Stochastic Algorithms, pp. 169–178 (2009)

  130. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. SIMULATION 76, 60–68 (2001)

    Google Scholar 

  131. Sharma, M., Garg, R.: HIGA: harmony-inspired genetic algorithm for rack-aware energy-efficient task scheduling in cloud data centers. Eng. Sci. Technol. Int. J. 23, 211–224 (2020)

    Google Scholar 

  132. Peng, H., Wen, W.-S., Tseng, M.-L., Li, L.-L.: Joint optimization method for task scheduling time and energy consumption in mobile cloud computing environment. Appl. Soft Comput. 80, 534–545 (2019)

    Google Scholar 

  133. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Google Scholar 

  134. Kumar, M., Sharma, S.C.: PSO-COGENT: Cost and energy efficient scheduling in cloud environment with deadline constraint. Sustain. Comput. 19, 147–164 (2018)

    Google Scholar 

  135. Singh, S., Chana, I., Singh, M., Buyya, R.: SOCCER: self-optimization of energy-efficient cloud resources. Clust. Comput. 19, 1787–1800 (2016)

    Google Scholar 

  136. Db, L.D., Krishna, P.V.: Honey bee behavior inspired load balancing of tasks in cloud computing environments. Appl. Soft Comput. 13, 2292–2303 (2013)

    Google Scholar 

  137. Ramezani, F., Lu, J., Hussain, F.K.: Task-based system load balancing in cloud computing using particle swarm optimization. Int. J. Parallel Prog. 42, 739–754 (2014)

    Google Scholar 

  138. Chen, H., Wang, F., Helian, N., Akanmu, G.: User-priority guided Min-Min scheduling algorithm for load balancing in cloud computing. In: 2013 National Conference on Parallel Computing Ttechnologies, pp. 1–8 (2013)

  139. Fernández-Cerero, D., Jakóbik, A., Grzonka, D., Kołodziej, J., Fernández-Montes, A.: Security supportive energy-aware scheduling and energy policies for cloud environments. J. Parallel Distrib. Comput. 119, 191–202 (2018)

    Google Scholar 

  140. Jin, H.Z., Yang, L., Hao, O.: Scheduling strategy based on genetic algorithm for cloud computer energy optimization. In: 2015 IEEE International Conference on Communication Problem-Solving, pp. 516–519 (2015)

  141. Tan, Y., Zeng, G.-S., Wang, W.: Policy of energy optimal management for cloud computing platform with stochastic tasks. Ruanjian Xuebao J. Softw. 23, 266–278 (2012)

    Google Scholar 

  142. Babukarthik, R.G., Raju, R., Dhavachelvan, P.: Energy-aware scheduling using hybrid algorithm for cloud computing. In: 2012 Third International Conference on Computing, Communication and Networking Technologies, pp. 1–6 (2012)

  143. Kumar, S., Kalra, M.: A hybrid approach for energy-efficient task scheduling in cloud. In: Proceedings of 2nd International Conference on Communication, Computing and Networking, pp. 1011–1019 (2019)

  144. Cotes-Ruiz, I.T., Prado, R.P., García-Galán, S., Muñoz-Expósito, J.E., Ruiz-Reyes, N.: Dynamic voltage frequency scaling simulator for real workflows energy-aware management in green cloud computing. PLoS ONE 12, 1–30 (2017)

    Google Scholar 

  145. Singh, S., Kalra, M.: Scheduling of independent tasks in cloud computing using modified genetic algorithm. In: International Conference on Computational Intelligence and Communication Networks, pp. 565–569 (2014)

  146. Zhao, J., Qiu, H.: Genetic algorithm and ant colony algorithm based energy-efficient task scheduling. In: IEEE Third International Conference on Information Science and Technology, pp. 946–950 (2013)

  147. Shojafar, M., Kardgar, M., Hosseinabadi, A.A.R., Shamshirband, S., Abraham, A.: TETS: A genetic-based scheduler in cloud computing to decrease energy and makespan. In: International Conference on Hybrid Intelligent Systems, pp. 103–115 (2016)

  148. Lee, Y.C., Zomaya, A.Y.: Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling. In: 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 92–99 (2009)

  149. Ibrahim, H., O. Aburukba R, El-Fakih KH,: An integer linear programming model and adaptive genetic algorithm approach to minimize energy consumption of cloud computing data center. Comput. Electr. Eng. 67, 551–565 (2017)

    Google Scholar 

  150. Thornburg K, Hummel A (2006) Lingo 8.0 tutorial. Columbia University: New York, NY, USA.

  151. Usero, B., Fernández, Z.: First come first served: how market and non-market actions influence pioneer market share. J. Bus. Res. 62, 1139–1145 (2009)

    Google Scholar 

  152. Wang, X., Wang, Y., Cui, Y.: A new multi-objective bi-level programming model for energy and locality aware multi-job scheduling in cloud computing. Futur. Gener. Comput. Syst. 36, 91–101 (2014)

    Google Scholar 

  153. Zhang, J., Tang, Q., Li, P., Deng, D., Chen, Y.: A modified MOEA/D approach to the solution of multi-objective optimal power flow problem. Appl. Soft Comput. 47, 494–514 (2016)

    Google Scholar 

  154. Pering, T., Burd, T., Brodersen, R.: The simulation and evaluation of dynamic voltage scaling algorithms. International Symposium on Low Power Electronics and Design, pp. 76–81 (1998)

  155. Bozdağ, D., Catalyurek, U., Özgüner, F.: A task duplication based bottom-up scheduling algorithm for heterogeneous environments. In: International Conference on Parallel and Distributed Processing (2006)

  156. Guo, P., Liu, M., Xue, Z.H.: A PSO-based energy-efficient fault-tolerant static scheduling algorithm for real-time tasks in clouds. In: International Conference on Computer and Communications (2018)

  157. Budhiraja, N., Marzullo, K., B. Schneider F, Toueg S,: Primary-backup protocols: lower bounds and optimal implementations. Depend. Comput. Fault-Tolerant Syst. 8, 321–343 (1992)

    Google Scholar 

  158. Naithani, P.: Genetic algorithm based scheduling to reduce energy consumption in cloud. In: International Conference on Parallel, Distributed and Grid Computing, pp. 616–620 (2018)

  159. Ben Alla, H., Ben Alla, S., Touhafi, A., Ezzati, A.: Deadline and energy aware task scheduling in cloud computing. In: International Conference on Cloud Computing Technologies and Applications (2018)

  160. Faggioli, D., Trimarchi, M., Checconi, F., Bertogna, M., Mancina, A.: An implementation of the earliest deadline first algorithm in Linux. In: IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing, pp. 1984–1989 (2009)

  161. Shen, G., Zhang, Y.Q.: A shadow price guided genetic algorithm for energy aware task scheduling on cloud computers. A Shadow Price Guided Genetic Algorithm for Energy Aware Task Scheduling on Cloud Computers, pp. 522–529 (2011)

  162. Kumar, G.G., Vivekanandan, P.: Energy efficient scheduling for cloud data centers using heuristic based migration. Clust. Comput. 22, 14073–14080 (2017)

    Google Scholar 

  163. Shukla, D.K., Kumar, D., Kushwaha, D.K.: Task scheduling to reduce energy consumption and makespan of cloud computing using NSGA-II. Materials Today: Proceedings, pp. 1–8 (2020)

  164. Dai, M., Tang, D., Giret, A., Salido, M.A.: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robot. Comput. Integr. Manuf. 59, 143–157 (2019)

    Google Scholar 

  165. Medara, R., Singh, R.S.H., Amit,: Energy-aware workflow task scheduling in clouds with virtual machine consolidation using discrete water wave optimization. Simul. Model. Pract. Theory 110, 102–323 (2021)

    Google Scholar 

  166. Zheng, Y.: Water wave optimization: a new nature-inspired metaheuristic. Comput. Oper. Res. 55, 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

  167. Mohanapriya, N., Kousalya, G., Balakrishnan, P., Raj, C.P.: Energy efficient workflow scheduling with virtual machine consolidation for green cloud computing. J. Intell. Fuzzy Syst. 34, 1561–1572 (2018)

    Google Scholar 

  168. Walia, N.K., Kaur, N., Alowaidi, M., Bhatia, K.S., Mishra, S.H., Sharma, N.K., Sharma, S.K., Kaur, H.: An energy-efficient hybrid scheduling algorithm for task scheduling in the coud computing environments. IEEE Access 9, 117325–117337 (2021)

    Google Scholar 

  169. Gupta, I., Kaswan, A., Jana, P.K.: A flower pollination algorithm based task scheduling in cloud computing. Int. Conf. Comput. Intell. Commun. Business Anal. 776, 97–107 (2017)

    Google Scholar 

  170. White, T.: Hadoop: The Definitive Guide. O'Reilly Media, Inc. (2009)

  171. Khawam, K., Kofman, D., Altman, E.: The weighted proportional fair scheduler. In: International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (200^)

  172. Ismail, L., Materwala, H.: EATSVM: energy-aware task scheduling on cloud virtual machines. Proc. Comput. Sci. 135, 248–258 (2018)

    Google Scholar 

  173. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud computing systems. J. Supercomput. 60, 268–280 (2012)

    Google Scholar 

  174. Ismail, L., Fardoun, A.: Eats: energy-aware tasks scheduling in cloud computing systems. Proc. Comput. Sci. 83, 870–877 (2016)

    Google Scholar 

  175. Chen, H., Zhu, X., Guo, H., Zhu, J., Qin, X., Wu, J.: Towards energy-efficient scheduling for real-time tasks under uncertain cloud computing environment. J. Syst. Softw. 99, 20–35 (2015)

    Google Scholar 

  176. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Futur. Gener. Comput. Syst. 28, 755–768 (2012)

    Google Scholar 

  177. Mills, A.F., Anderson, J.H.: A stochastic framework for multiprocessor soft real-time scheduling. In: 2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 311–320 (2010)

  178. Li, J., Ming, Z., Qiu, M., Quan, G., Qin, X., Chen, T.: Resource allocation robustness in multi-core embedded systems with inaccurate information. J. Syst. Architect. 57, 840–849 (2011)

    Google Scholar 

  179. Van de Vonder, S., Demeulemeester, E., Herroelen, W.: A classification of predictive-reactive project scheduling procedures. J. Sched. 10, 195–207 (2007)

    MathSciNet  MATH  Google Scholar 

  180. Dong, Z., Zhuang, W., Rojas-Cessa, R.: Delayed best-fit task scheduling to reduce energy consumption in cloud data centers. In: 2019 International Conference on Internet of Things; IEEE Green Computing and Communications; IEEE Cyber, Physical and Social Computing; IEEE Smart Data, pp. 729–736 (2019)

  181. Wilkes, J.: More Google cluster data. Google research blog, Nov (2011)

  182. Zhao, H., Qi, G., Wang, Q., Wang, J., Yang, P., Qiao, L.: Energy-efficient task scheduling for heterogeneous cloud computing systems. In: IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems, pp. 952–959 (2019)

  183. Ari, A.A.A., Damakoa, I., Titouna, C., Labraoui, N., Gueroui, A.: Efficient and scalable aco-based task scheduling for green cloud computing environment. In: 2017 IEEE International Conference on Smart Cloud, pp. 66–71 (2017)

  184. Agarwal, M., Srivastava, G.M.S.: A genetic algorithm inspired task scheduling in cloud computing. In: International Conference on Computing, Communication and Automation, pp. 364–367 (2016)

  185. Fatima, S., Vishwanath, V.M.: A heterogeneous dynamic scheduling minimized make-span for energy and performance balancing. In: 2018 Second International Conference on Advances in Electronics, Computers and Communications, pp. 1–7 (2018)

  186. Zhu, Z., Zhang, G., Li, M., Liu, X.: Evolutionary multi-objective workflow scheduling in cloud. IEEE Trans. Parallel Distrib. Syst. 27, 1344–1357 (2015)

    Google Scholar 

  187. Xie, G., Chen, Y., Xiao, X., Xu, C., Li, R., Li, K.: Energy-efficient fault-tolerant scheduling of reliable parallel applications on heterogeneous distributed embedded systems. IEEE Trans. Sustain. Comput. 3, 167–181 (2017)

    Google Scholar 

  188. Rocha, I., Göttel, C., Felber, P., Pasin, M., Rouvoy, R., Schiavoni, V.: Heats: heterogeneity-and energy-aware task-based scheduling. In: 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pp. 400–405 (2019)

  189. Medel, V., Rana, O., Bañares, J.Á., Arronategui, U.: Modelling performance and resource management in kubernetes. In: Proceedings of the 9th International Conference on Utility and Cloud Computing, pp. 257–262 (2016)

  190. Kaur, S., Ghose, M., Sahu, A.: Energy efficient scheduling of real-time tasks in cloud environment. In: IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems, pp. 178–185 (2017)

  191. Hsu, C.-H., Slagter, K.D., Chen, S.-C., Chung, Y.-C.: Optimizing energy consumption with task consolidation in clouds. Inf. Sci. 258, 452–462 (2014)

    Google Scholar 

  192. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutor. 18, 732–794 (2015)

    Google Scholar 

  193. Aghababaeipour, A., Ghanbari, S.: A new adaptive energy-aware job scheduling in cloud computing. In: International Conference on Soft Computing and Data Mining, pp. 308–317 (2018)

  194. Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48, 9–26 (1990)

    MATH  Google Scholar 

  195. Saaty, T.L.: Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS, New York (2000)

    Google Scholar 

  196. Saaty, T.L.: The modern science of multicriteria decision making and its practical applications: the AHP/ANP approach. Oper. Res. 61, 1101–1118 (2013)

    MathSciNet  MATH  Google Scholar 

  197. Ghanbari, S.: Multi-criteria divisible load scheduling in binary tree network. Dissertation, University of Putra Malaysia (2016)

  198. Hosseinimotlagh, S., Khunjush, F., Samadzadeh, R.: SEATS: smart energy-aware task scheduling in real-time cloud computing. J. Supercomput. 71, 45–66 (2015)

    Google Scholar 

  199. Yang, J., Jiang, B., Lv, Z.H., Raymond Choo, K.K.: A task scheduling algorithm considering game theory designed for energy management in cloud computing. Futur. Gener. Comput. Syst. 105, 985–992 (2016)

    Google Scholar 

  200. Nash, J.: Non-cooperative games. Mathematics Department, Princeton University 54, 286–295 (1951)

    MathSciNet  MATH  Google Scholar 

  201. Keerthika, P., Kasthuri, N.: A hybrid scheduling algorithm with load balancing for computational grid. J. Adv. Sci. Technol. 58, 13–28 (2013)

    Google Scholar 

  202. Ghose, M., Sahu, A., Karmakar, S.: Urgent point aware energy-efficient scheduling of tasks with hard deadline on virtualized cloud system. Sustain. Comput. 28, 100–416 (2018)

    Google Scholar 

  203. Tóth, Š., Ruda, M.: Distributed job scheduling in MetaCentrum. In: Journal of Physics: Conference Series 608 (2014)

  204. Chen, Y., Ganapathi, A., Griffith, R., Katz, R.: Analysis and lessons from a publicly available google cluster trace. Electrical Engineering and Computer Sciences University of California at Berkeley (2010)

  205. Chen, H., Liu, G., Yin, S.H., Liu, X., Qiu, D.: ERECT: energy-efficient reactive scheduling for real-time tasks in heterogeneous virtualized clouds. J. Comput. Sci. 28, 416–425 (2016)

    Google Scholar 

  206. Kim, K.H., Beloglazov, A., Buyya, R.: Power-aware provisioning of cloud resources for real-time services. International Workshop on Middleware for Grids, Clouds and e-Science, pp. 1–6 (2009)

  207. Wu, L., Garg, S., Buyya, R.: SLA-based admission control for a Software-as-a-Service provider in Cloud computing environments. J. Comput. Syst. Sci. 78, 1280–1299 (2012)

    Google Scholar 

  208. Panneerselvam, J., Liu, L., Lu, Y., Antonopoulos, N.: An investigation into the impacts of task-level behavioural heterogeneity upon energy efficiency in Cloud datacentres. Futur. Gener. Comput. Syst. 83, 239–249 (2017)

    Google Scholar 

  209. Zhang, Q., Metri, G., Raghavan, S., Shi, W.: RESCUE: an energy-aware scheduler for cloud environments. Sustain. Comput. 4, 215–224 (2014)

    Google Scholar 

  210. Chen, P.Y., Cokus, J., Pellegrini M.: BS seeker: precise mapping for bisulfite sequencing. BMC Bioinform. 11, 9 (2010)

    Google Scholar 

  211. Menasce, D.A.: TPC-W: a benchmark for e-commerce. IEEE Internet Comput. 6, 83–87 (2002)

    Google Scholar 

  212. Li, J., Feng, L., Fang, S.H.: An greedy-based job scheduling algorithm in cloud computing. Comput. Sci. J. Softw. 9, 921–925 (2014)

    Google Scholar 

  213. Hao, L., Lib, B., Lic, K., Jind, Y.: Research for energy optimized resource scheduling algorithm in cloud computing base on task endurance value. In: IEEE International Conference on Artificial Intelligence and Computer Applications (2019)

  214. Xiaoqing, Z.H., Yajie, H.: Data-dependent tasks re-scheduling energy efficient algorithm. In: IEEE 4th International Conference on Computer and Communications (2018)

  215. Xue, S.H., Zhang, Y., Xu, X., Xing, G., Xiang, H.: QET: a QoS-based energy-aware task scheduling method in cloud environment. Expert Syst. Appl. 138, 112–804 (2017)

    Google Scholar 

  216. Panda, K., Jana, P.: An energy-efficient task scheduling algorithm for heterogeneous cloud computing systems. Clust. Comput. 22, 509–527 (2019)

    Google Scholar 

  217. Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., Gu, Z.: Online optimization for scheduling preemptable tasks on IaaS cloud system. J. Parallel Distrib. Comput. 72, 666–677 (2012)

    Google Scholar 

  218. Kaur, T., Chana, I.: Energy aware scheduling of deadline-constrained tasks in cloud computing. Clust. Comput. 19, 679–698 (2015)

    Google Scholar 

  219. Liao, J.S., Chang, C., Hsu, Y.L., Zhang, X.W., Lai, K.C., Hsu, C.H.: Energy-efficient resource provisioning with SLA consideration on cloud computing. In: 41st International Conference on Parallel Processing Workshops, pp. 206–211 (2012)

  220. Hussin, M., Lee, Y.C., Zomaya, A.Y.: Priority-based scheduling for large-scale distribute systems with energy awareness. In: 9th IEEE International Conference on Dependable, Autonomic and Secure Computing, pp. 503–509 (2011)

  221. Sun, T., Tao, Y., Tang, R.: An algorithm towards energy efficient scheduling for real-time tasks under cloud computing environment. In: International Conference on Geo-Spatial Knowledge and Intelligence, pp. 578–591 (2018)

  222. Jeevitha, J.K., Athisha, G.: A novel scheduling approach to improve the energy efficiency in cloud computing data centers. J. Ambient Intell. Hum. Comput. (2020). https://doi.org/10.1007/s12652-020-02283-6v

    Article  Google Scholar 

  223. Shahzad, B., Tanvir Afzal, M.: Optimized solution to shortest job first by eliminating the starvation. In: Jordanian International Electrical Engineering and Electronic Conference (2005)

  224. Muraleedharan, A., Antony, N., Nandakumar, R.: Dynamic time slice round robin scheduling algorithm with unknown burst time. Indian J. Sci. Technol. 9, 1–6 (2016)

    Google Scholar 

  225. Muthurajkumar, S., Vijayalakshmi, M., Kannan, A., Ganapathy, S.: Optimal and energy efficient scheduling techniques for resource management in public cloud networks. Natl. Acad. Sci. Lett. 41, 219–223 (2015)

    MathSciNet  Google Scholar 

  226. Qian, W., Cong, W., Kui, R., Wenjing, L., Jin, L.: Enabling public auditability and data dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib. Syst. 22, 847–859 (2011)

    Google Scholar 

  227. Cong, W., Qian, W., Kui, R., Ning, C., Wenjing, L.: Toward secure and dependable storage services in cloud computing. Trans. Serv. Comput. 5, 220–232 (2012)

    Google Scholar 

  228. Kan, Y., Xiaohua, J.: An efficient and secure dynamic auditing protocol for data storage in cloud computing. IEEE Trans. Parallel Distrib. Syst. 24, 1717–1726 (2013)

    Google Scholar 

  229. Taner, C., Abdul, H.Z., Derya, Y.: Localized power-aware routing with an energy efficient pipelined wakeup schedule for wireless sensor networks. Turk. J. Electr. Eng. Comput. Sci. 20, 964–997 (2012)

    Google Scholar 

  230. Liu, T., Chenb, F., Mab, Y., Xie, Y.: An energy-efficient task scheduling for mobile devices based on cloud assistant. Futur. Gener. Comput. Syst. 61, 1–12 (2016)

    Google Scholar 

  231. Zhu, W., Zhuang, Y., Zhang, L.: A three-dimensional virtual resource scheduling method for energy saving in cloud computing. Futur. Gener. Comput. Syst. 69, 66–74 (2017)

    Google Scholar 

  232. Cotes-Ruiz, I.T., Prado, R.P., García-Galán, S., Muñoz-Expósito, J.E., Ruiz-Reyes, N.: Energy-aware scheduling in cloud computing systems. In: IEEE International Conference on Fuzzy Systems (2017)

  233. Chen, W., Deelman, E.: Workflowsim: a toolkit for simulating scientific workflows in distributed environments. In: IEEE 8th International Conference on E-Science (2012)

  234. Ismail, L., Fardoun, A.: Towards energy-aware task scheduling (EATS) framework for divisible-load applications in cloud computing infrastructure. In: IEEE International Systems Conference (2017)

  235. Tektronix-TDS2012B. IOP Publishing. www.2tek. http://www2.tek.com/cmswpt/psdetails.lotr?cs=psu&ci=13295&lc=ESMX. Accesed 28 June 2016

  236. Yuan, H., Bi, J., Zhou, M.: Energy-efficient and QoS-optimized adaptive task scheduling and management in clouds. IEEE Trans. Automat. Sci. Eng. 99, 1–12 (2020)

    Google Scholar 

  237. Pasandideh, S.H.R., Niaki, S.T.A., Asadi, K.: Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA. Inf. Sci. 292, 57–74 (2015)

    MathSciNet  MATH  Google Scholar 

  238. Mohd-Zain, M.Z.B., Kanesan, J., Chuah, J.H., Dhanapal, S., Kendall, G.: A multi-objective particle swarm optimization algorithm based on dynamic boundary search for constrained optimization. Appl. Soft Comput. 70, 680–700 (2018)

    Google Scholar 

  239. Zhang, L., Wang, L., Wen, Zh., Xiao, M., Man, J.: Minimizing energy consumption scheduling algorithm of workflows with cost budget constraint on heterogeneous cloud computing systems. IEEE Access 8, 205099–205110 (2020)

    Google Scholar 

  240. Chen, Y., Xie, G., Li, R.: Reducing energy consumption with cost budget using available budget preassignment in heterogeneous cloud computing systems. IEEE Access 6, 20572–20583 (2018)

    Google Scholar 

  241. He, C., Yang, Y., Hong, B.: Cloud task scheduling based on policy gradient algorithm in heterogeneous cloud data center for energy consumption optimization. Int. Conf. Internet Things Intellig. Appl. 2020, 1–5 (2020)

    Google Scholar 

  242. Li, F., Hu, B.: DeepJS: Job scheduling based on deep reinforcement learning in cloud data center. In: International Conference on Big Data and Computing, pp. 48–53 (2019)

  243. Wickremasinghe, B., Calheiros, R., Buyya, R.: CludAnalyst: a CloudSim-based visual modeller for analysing cloud computing environments and applications. In: 24th IEEE International Conference on Advanced Information Networking, pp. 446-452 (2010)

  244. Ostermann, S., Plankensteiner, K., Prodan, R., Fahringer, T.: GroudSim: an event-based simulation framework for computational grids and clouds. Eur. Conf. Parallel Process. 6586, 305–313 (2011)

    Google Scholar 

  245. DesRivieres, J., Wiegand, J.: Eclipse: a platform for integrating development tools. IBM Syst. J. 43, 371–383 (2004)

    Google Scholar 

  246. Tian, W., Xu, M., Chen, A., et al.: Open-source simulators for cloud computing: comparative study and challenging issues. Simul. Model. Pract. Theory 58, 239–254 (2015)

    Google Scholar 

  247. Núñez, A., Cañizares, P.C., de Lara, J.: CloudExpert: an intelligent system for selecting cloud system simulators. Expert Syst. Appl. 187, 115955 (2022)

    Google Scholar 

  248. Sharkh, M.A., Kanso, A., Shami, A., Öhlén, P.: Building a cloud on earth: a study of cloud computing data center simulators. Comput. Netw. 108, 78–96 (2016)

    Google Scholar 

  249. Biswas, N.K., Banerjee, S., Biswas, U., Ghosh, U.: An approach towards development of new linear regression prediction model for reduced energy consumption and SLA violation in the domain of green cloud computing. Sustain. Energy Technol. Assessments 45, 101087 (2021)

    Google Scholar 

  250. Singh, B.P., Kumar, S.A., Gao, X.-Z., et al.: A study on energy consumption of DVFS and simple VM consolidation policies in cloud computing data centers using CloudSim toolkit. Wireless Pers. Commun. 112, 729–741 (2020)

    Google Scholar 

  251. Chaurasia, N., Kumar, M., Chaudhry, R., Verma, O.P.: Comprehensive survey on energy-aware server consolidation techniques in cloud computing. J. Supercomput. 77, 11682–11737 (2021)

    Google Scholar 

  252. Makaratzis, A.T., Giannoutakis, K.M., Tzovaras, D.: Energy modeling in cloud simulation frameworks. Futur. Gener. Comput. Syst. 79, 715–725 (2018)

    Google Scholar 

  253. Bambrik, I.: A survey on cloud computing simulation and modeling. SN Comput. Sci. 1, 1–34 (2020)

    Google Scholar 

  254. Ismail, A.: Energy-driven cloud simulation: existing surveys, simulation supports, impacts and challenges. Cluster Computing, pp. 1–17 (2020)

  255. Lim, S.-H., Sharma, B., Nam, G., et al.: MDCSim: a multi-tier data center simulation, platform. In: 2009 IEEE International Conference on Cluster Computing and Workshops, pp. 1–9 (2009)

  256. Tian, W., Zhao, Y., Xu, M., et al.: A toolkit for modeling and simulation of real-time virtual machine allocation in a cloud data center. IEEE Trans. Autom. Sci. Eng. 12, 153–161 (2013)

    Google Scholar 

  257. Buyya, R., Murshed, M.: Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. Concurr. Comput. 14, 1175–1220 (2002)

    MATH  Google Scholar 

  258. Malik, A.W., Bilal, K., Aziz, K., et al.: Cloudnetsim++: A toolkit for data center simulations in omnet++. In: 2014 11th Annual High Capacity Optical Networks and Emerging/Enabling Technologies (Photonics for Energy), pp. 104–108 (2014)

  259. Bilal, K., Khan, S.U., Madani, S.A., et al.: A survey on green communications using adaptive link rate. Clust. Comput. 16, 575–589 (2013)

    Google Scholar 

  260. Tighe, M., Keller, G., Bauer, M., Lutfiyya, H. DCSim: a data centre simulation tool for evaluating dynamic virtualized resource management. In: 2012 8th International Conference on Network and Service Management (cnsm) and 2012 Workshop on Systems Virtualiztion Management (svm), pp. 385–392 (2012)

  261. Lago, D.G., da Silva, R.A.C., Madeira, E.R.M., et al.: SinergyCloud: A simulator for evaluation of energy consumption in data centers and hybrid clouds. Simul. Model. Pract. Theory 10, 110 (2021)

    Google Scholar 

  262. Núñez, A., Vázquez-Poletti, J.L., Caminero, A.C., et al.: iCanCloud: a flexible and scalable cloud infrastructure simulator. J. Grid Comput. 10, 185–209 (2012)

    Google Scholar 

  263. Castañé, G.G., Nunez, A., Llopis, P., Carretero, J.: E-mc2: a formal framework for energy modelling in cloud computing. Simul. Model. Pract. Theory 39, 56–75 (2013)

    Google Scholar 

  264. Song, Y., Chen, Y., Yu, Z., et al.: CloudPSS: a high-performance power system simulator based on cloud computing. Energy Rep. 6, 1611–1618 (2020)

    Google Scholar 

  265. Gupta, S.K.S., Banerjee, A., Abbasi, Z., et al.: Gdcsim: a simulator for green data center design and analysis. ACM Trans. Model. Comput. Simul. 24, 1–27 (2014)

    MathSciNet  Google Scholar 

  266. Kliazovich, D., Bouvry, P., Khan, S.U.: GreenCloud: a packet-level simulator of energy-aware cloud computing data centers. J. Supercomput. 62, 1263–1283 (2012)

    Google Scholar 

  267. Fernández-Cerero, D., Fernández-Montes, A., Jakóbik, A., et al.: SCORE: simulator for cloud optimization of resources and energy consumption. Simul. Model. Pract. Theory 82, 160–173 (2018)

    Google Scholar 

  268. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible, scalable schedulers for large compute clusters. In: Proceedings of the 8th ACM European Conference on Computer Systems, pp. 351–364 (2013)

  269. Fernández-Cerero, D., Jakóbik, A., Fernández-Montes, A., Kołodziej, J.: GAME-SCORE: game-based energy-aware cloud scheduler and simulator for computational clouds. Simul. Model. Pract. Theory 93, 3–20 (2019)

    Google Scholar 

  270. Fernández-Cerero, D., Fernández-Montes, A., Jakóbik, A., Kolodziej, J.: Stackelberg game-based models in energy-aware cloud scheduling. In: ECMS, pp. 460–467 (2018)

  271. Kecskemeti, G.: DISSECT-CF: a simulator to foster energy-aware scheduling in infrastructure clouds. Simul. Model. Pract. Theory 58, 188–218 (2015)

    Google Scholar 

  272. Zakarya, M., Gillam, L., Khan, A.A., Rahman, I.U.: Perficientcloudsim: a tool to simulate large-scale computation in heterogeneous clouds. J. Supercomput. 77, 3959–4013 (2021)

    Google Scholar 

  273. Atiewi, S., Yussof, S., Ezanee, M., Almiani, M.: A review energy-efficient task scheduling algorithms in cloud computing. In: 2016 IEEE Long Island Systems, Applications and Technology Conference, pp. 1–6 (2016)

  274. Agatonovic-Kustrin, S., Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22, 717–727 (2000)

    Google Scholar 

  275. Xu, R., Lv, P., Xu, F., Shi, Y.: A survey of approaches for implementing optical neural networks. Opt. Laser Technol. 136, 1–14 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mansouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafari, R., Kabutarkhani, F.H. & Mansouri, N. Task scheduling algorithms for energy optimization in cloud environment: a comprehensive review. Cluster Comput 25, 1035–1093 (2022). https://doi.org/10.1007/s10586-021-03512-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03512-z

Keywords

Navigation