Skip to main content
Log in

Blockchain-assisted authentication and key agreement scheme for fog-based smart grid

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In recent times, the research works on the integration of fog computing with blockchain to address the issues such as higher latency, single point of failure, and centralization have expanded considerably. However, only a few works have been done focusing on authentication and key establishment for blockchain-based smart grid (SG) under fog environment. Thus, this paper introduces a mutual authentication and key agreement scheme for blockchain and fog computing based SG environment. Unlike the existing schemes that depend on single trusted authorities for storage and computation tasks, the proposed scheme reduces this dependency by creating a blockchain-based distributed environment assisted by cloud servers and fog nodes. In addition, a secure and shared key is established among smart meter, fog node, and cloud server to achieve message confidentiality between them. A detailed formal and informal security analysis proves that the proposed protocol is secure under the RoR model and achieves the predefined security goals. The blockchain and cryptographic operations are evaluated using hyperledger fabric and cryptographic libraries, respectively. Finally, the performance analysis and comparative study show that the proposed scheme with some additional features is efficient in computational and communication costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. “Crypto++ Library 8.4 | Free C++ Class Library of Cryptographic Schemes“, https://www.cryptopp.com/.

  2. “PBC Library—Pairing-Based Cryptography—About“, https://crypto.stanford.edu/pbc/.

  3. “Installing the development environment | Hyperledger Composer“, https://hyperledger.github.io/composer/v0.19/installing/development-tools.

References

  1. Fang, D., Qian, Y., Hu, R.Q.: A flexible and efficient authentication and secure data transmission scheme for IoT applications. IEEE Internet Things J. 7(4), 3474–3484 (2020). https://doi.org/10.1109/JIOT.2020.2970974

    Article  Google Scholar 

  2. Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., Markakis, E.K.: A survey on the internet of things (IoT) forensics: challenges, approaches, and open issues. IEEE Commun. Surv. Tutor. 22(2), 1191–1221 (2020). https://doi.org/10.1109/COMST.2019.2962586

    Article  Google Scholar 

  3. Mollah, M.B., Zhao, J., Niyato, D., Lam, K.Y., Zhang, X., Ghias, A.M.Y.M., Koh, L.H., Yang, L.: Blockchain for future smart grid: a comprehensive survey. IEEE Internet Things J. 8(1), 18–43 (2021). https://doi.org/10.1109/JIOT.2020.2993601

    Article  Google Scholar 

  4. Garg, S., Kaur, K., Kaddoum, G., Rodrigues, J.J.P.C., Guizani, M.: Secure and lightweight authentication scheme for smart metering infrastructure in smart grid. IEEE Trans. Ind. Inform. 16(5), 3548–3557 (2020). https://doi.org/10.1109/TII.2019.2944880

    Article  Google Scholar 

  5. Wang, J., Wu, L., Choo, K.R., He, D.: Blockchain-based anonymous authentication with key management for smart grid edge computing infrastructure. IEEE Trans. Ind. Inform. 16(3), 1984–1992 (2020). https://doi.org/10.1109/TII.2019.2936278

    Article  Google Scholar 

  6. Ma, M., He, D., Wang, H., Kumar, N., Choo, K.R.: An efficient and provably secure authenticated key agreement protocol for fog-based vehicular ad-hoc networks. IEEE Internet Things J. 6(5), 8065–8075 (2019). https://doi.org/10.1109/JIOT.2019.2902840

    Article  Google Scholar 

  7. Aazam, M., Zeadally, S., Harras, K.A.: Fog computing architecture, evaluation, and future research directions. IEEE Commun. Mag. 56(5), 46–52 (2018)

    Article  Google Scholar 

  8. Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42 (2017)

    Article  Google Scholar 

  9. Singh, S., Chaurasiya, V.K.: Mutual authentication scheme of IoI devices in fog computing environment. Clust. Comput. 24, 1643–1657 (2020)

    Article  Google Scholar 

  10. Khalid, U., Asim, M., Baker, T., Hung, P.C., Tariq, M.A., Rafferty, L.: A decentralized lightweight blockchain-based authentication mechanism for IoI systems. Clust. Comput. 23(3), 2067–2087 (2020)

    Article  Google Scholar 

  11. Faheem, M., Butt, R.A., Raza, B., Ashraf, M.W., Begum, S., Ngadi, M.A., Gungor, V.C.: Bio-inspired routing protocol for wsn-based smart grid applications in the context of industry 4.0. Trans. Emerg. Telecommun. Technol. 30(8), e3503 (2019a)

  12. Faheem, M., Butt, R.A., Raza, B., Ashraf, M.W., Ngadi, M.A., Gungor, V.C.: A multi-channel distributed routing scheme for smart grid real-time critical event monitoring applications in the perspective of industry 4.0. Int. J. Ad Hoc Ubiquitous Comput. 32(4), 236–256 (2019b)

  13. Guan, Z., Si, G., Zhang, X., Wu, L., Guizani, N., Du, X., Ma, Y.: Privacy-preserving and efficient aggregation based on blockchain for power grid communications in smart communities. IEEE Commun. Mag. 56(7), 82–88 (2018)

    Article  Google Scholar 

  14. Badra, M., Zeadally, S.: Design and performance analysis of a virtual ring architecture for smart grid privacy. IEEE Trans. Inf. Forensics Security 9(2), 321–329 (2014)

    Article  Google Scholar 

  15. Gong, Y., Cai, Y., Guo, Y., Fang, Y.: A privacy-preserving scheme for incentive-based demand response in the smart grid. IEEE Trans. Smart Grid 7(3), 1304–1313 (2015)

    Article  Google Scholar 

  16. Wu, D., Zhou, C.: Fault-tolerant and scalable key management for smart grid. IEEE Trans. Smart Grid 2(2), 375–381 (2011)

    Article  Google Scholar 

  17. Fouda, M.M., Fadlullah, Z.M., Kato, N., Lu, R., Shen, X.S.: A lightweight message authentication scheme for smart grid communications. IEEE Trans. Smart Grid 2(4), 675–685 (2011)

    Article  Google Scholar 

  18. Xia, J., Wang, Y.: Secure key distribution for the smart grid. IEEE Trans. Smart Grid 3(3), 1437–1443 (2012)

    Article  Google Scholar 

  19. Park, J.H., Kim, M., Kwon, D.: Security weakness in the smart grid key distribution scheme proposed by Xia and Wang. IEEE Trans. Smart Grid 4(3), 1613–1614 (2013)

    Article  Google Scholar 

  20. Liu, N., Chen, J., Zhu, L., Zhang, J., He, Y.: A key management scheme for secure communications of advanced metering infrastructure in smart grid. IEEE Trans. Ind. Electron. 60(10), 4746–4756 (2012)

    Article  Google Scholar 

  21. Wan, Z., Wang, G., Yang, Y., Shi, S.: Skm: scalable key management for advanced metering infrastructure in smart grids. IEEE Trans. Ind. Electron. 61(12), 7055–7066 (2014)

    Article  Google Scholar 

  22. Tsai, J.L., Lo, N.W.: Secure anonymous key distribution scheme for smart grid. IEEE Trans. Smart Grid 7(2), 906–914 (2015)

    Google Scholar 

  23. Jo, M., Jangirala, S., Das, A.K., Li, X., Khan, M.K.: Designing anonymous signature-based authenticated key exchange scheme for IoT-enabled smart grid systems. IEEE Trans. Ind. Inform. 17(7), 4425–4436 (2020)

    Google Scholar 

  24. Odelu, V., Das, A.K., Wazid, M., Conti, M.: Provably secure authenticated key agreement scheme for smart grid. IEEE Trans. Smart Grid 9(3), 1900–1910 (2016)

    Google Scholar 

  25. Chen, Y., Martínez, J.F., Castillejo, P., López, L.: An anonymous authentication and key establish scheme for smart grid: Fauth. Energies 10(9), 1354 (2017)

    Article  Google Scholar 

  26. He, D., Wang, H., Khan, M.K., Wang, L.: Lightweight anonymous key distribution scheme for smart grid using elliptic curve cryptography. IET Commun. 10(14), 1795–1802 (2016)

    Article  Google Scholar 

  27. Abbasinezhad-Mood, D., Nikooghadam, M.: An anonymous ECC-based self-certified key distribution scheme for the smart grid. IEEE Trans. Ind. Electron. 65(10), 7996–8004 (2018)

    Article  Google Scholar 

  28. Zhang, L., Zhao, L., Yin, S., Chi, C.H., Liu, R., Zhang, Y.: A lightweight authentication scheme with privacy protection for smart grid communications. Fut. Gen. Comput. Syst. 100, 770–778 (2019)

    Article  Google Scholar 

  29. Sadhukhan, D., Ray, S., Obaidat, M.S., Dasgupta, M.: A secure and privacy preserving lightweight authentication scheme for smart-grid communication using elliptic curve cryptography. J. Syst. Architect. 114, 101938 (2021)

    Article  Google Scholar 

  30. Wang, W., Huang, H., Zhang, L., Su, C.: Secure and efficient mutual authentication protocol for smart grid under blockchain. Peer-to-Peer Netw. Appl. 14, 2681–2693 (2020)

    Article  Google Scholar 

  31. Deng, L., Gao, R.: Certificateless two-party authenticated key agreement scheme for smart grid. Inf. Sci. 543, 143–156 (2021)

    Article  MathSciNet  Google Scholar 

  32. Khan, A.A., Kumar, V., Ahmad, M., Rana, S.: Lakaf: Lightweight authentication and key agreement framework for smart grid network. J. Syst. Architect. 116, 102053 (2021)

    Article  Google Scholar 

  33. Badar, H.M.S., Qadri, S., Shamshad, S., Ayub, M.F., Mahmood, K., Kumar, N.: An identity based authentication protocol for smart grid environment using physical uncloneable function. IEEE Trans. Smart Grid 12(5), 4426–4434 (2021)

    Article  Google Scholar 

  34. Zhang, L., Zhu, Y., Ren, W., Wang, Y., Choo, K.K.R., Xiong, N.N.: An energy efficient authentication scheme based on Chebyshev chaotic map for smart grid environments. IEEE Internet Things J. (2021). https://doi.org/10.1109/JIOT.2021.3078175

    Article  Google Scholar 

  35. Chen, C.M., Chen, L., Huang, Y., Kumar, S.: Lightweight authentication protocol in edge-based smart grid environment. EURASIP J. Wirel. Commun. Netw. 1, 1–18 (2021)

    Google Scholar 

  36. Jia, X., He, D., Kumar, N., Choo, K.K.R.: Authenticated key agreement scheme for fog-driven IoT healthcare system. Wirel. Netw. 25(8), 4737–4750 (2019)

    Article  Google Scholar 

  37. Zhu, L., Li, M., Zhang, Z., Xu, C., Zhang, R., Du, X., Guizani, N.: Privacy-preserving authentication and data aggregation for fog-based smart grid. IEEE Commun. Mag. 57(6), 80–85 (2019)

    Article  Google Scholar 

  38. Khan, H.M., Khan, A., Jabeen, F., Rahman, A.U.: Privacy preserving data aggregation with fault tolerance in fog-enabled smart grids. Sustain. Cities Soc. 64, 102522 (2021)

    Article  Google Scholar 

  39. Zhang, H., Wang, J., Ding, Y.: Blockchain-based decentralized and secure keyless signature scheme for smart grid. Energy 180, 955–967 (2019)

    Article  Google Scholar 

  40. Chen, S., Yang, L., Zhao, C., Varadarajan, V., Wang, K.: Double-blockchain assisted secure and anonymous data aggregation for fog-enabled smart grid. Engineering (2020). https://doi.org/10.1016/j.eng.2020.06.018

    Article  Google Scholar 

  41. Naseer, O., Ullah, S., Anjum, L.: Blockchain-based decentralized lightweight control access scheme for smart grids. Arab. J. Sci. Eng. 46, 8233–8243 (2021)

    Article  Google Scholar 

  42. Lee, H., Ryu, J., Lee, Y., Won, D.: Security analysis of blockchain-based user authentication for smart grid edge computing infrastructure. In: 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM). IEEE, pp 1–4 (2021)

  43. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: International Conference on the Theory and Applications of Cryptographic Techniques. Springer, Cham, pp. 139–155 (2000)

  44. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key exchange in the three-party setting. In: International Workshop on Public Key Cryptography. Springer, Berlin, pp. 65–84 (2005)

  45. Zhang, J., Zhong, H., Cui, J., Xu, Y., Liu, L.: Smaka: secure many-to-many authentication and key agreement scheme for vehicular networks. IEEE Trans. Inf. Forensics Security 16, 1810–1824 (2020)

    Article  Google Scholar 

  46. Qi, M., Chen, J.: Two-pass privacy preserving authenticated key agreement scheme for smart grid. IEEE Syst. J. 15(3), 3201–3207 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [AT]; Methodology: [AT]; Formal analysis and investigation: [AT]; Writing—original draft preparation: [AT]; Writing—review and editing: [ST]; Supervision: [ST].

Corresponding author

Correspondence to Ashish Tomar.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, A., Tripathi, S. Blockchain-assisted authentication and key agreement scheme for fog-based smart grid. Cluster Comput 25, 451–468 (2022). https://doi.org/10.1007/s10586-021-03420-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03420-2

Keywords

Navigation