Skip to main content
Log in

A new local and nonlocal total variation regularization model for image denoising

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The total variation (TV) method for image deblurring is effective for sharpening image details in noisy images although this method tends to over-smooth the image details and inevitably results in staircase effects in smooth areas of the image. The nonlocal total variation (NLTV) method overcomes these drawbacks and retains fine details. However, it is not suitable for detecting similar patches and usually blurs edges in the image. Considering that the TV and NLTV are complementary, we propose a new local and nonlocal total variation (LNLTV) model. In this model, we first decompose the original image into a cartoon component and a detail component, then respectively apply the TV and NLTV to both components. To optimize the hybrid model, the Bregman iteration-based multivariable minimization (BIMM) method and the fast iteration-based multivariable minimization (FIMM) method are respectively employed to minimize the LNLTV energy function. The experimental results clearly demonstrate that the LNLTV model has better performance than some other state-of-the-art models with regard to evaluation indices and visual quality, and the FIMM method has a faster convergence rate and requires less time than the BIMM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Prob. 10(6), 1217–1229 (1997)

    Article  MathSciNet  Google Scholar 

  2. Aubin, J.P., Vinter, R.B.: Convex analysis and optimization. Tsinghua University Press, Beijing (2006)

    Google Scholar 

  3. Tikhonov, A.N., Arsenin, V.Y.: Solution of ill-posed problems. Math. Comput. 32(144), 491 (1977)

    Google Scholar 

  4. Marquina, A.: Nonlinear Inverse scale space methods for total variation blind deconvolution. SIAM J. Imaging Sci. 2(1), 64–83 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chan, T.F., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)

    Article  MathSciNet  Google Scholar 

  6. Marquina, A., Osher, S.J.: Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput. 37(3), 367–382 (2008)

    Article  MathSciNet  Google Scholar 

  7. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  8. Marquina, A., Osher, S.: Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. In: Proceedings of Scale-Space Theories in Computer Vision, Second International Conference, Scale-Space’99, DBLP, Corfu, Greece, September 26–27, pp. 429–434 (1999)

  9. Fu, S., Zhang, C.: Adaptive non-convex total variation regularization for image restoration. Electron. Lett. 46(13), 907–908 (2010)

    Article  Google Scholar 

  10. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MathSciNet  Google Scholar 

  11. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. SIAM J. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  Google Scholar 

  12. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. SIAM J. Multiscale Model. Simul. 4(4), 1091–1115 (2005)

    Article  MathSciNet  Google Scholar 

  13. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM J. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  Google Scholar 

  14. Zhang, X., Burger, M., Bresson, X., et al.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)

    Article  MathSciNet  Google Scholar 

  15. Liu, X., Huang, L.: Original Article: A new nonlocal total variation regularization algorithm for image denoising. Math. Comput. Simul. 97(1), 224–233 (2014)

    Article  Google Scholar 

  16. Wang, S., Liu, Z.W., Dong, W.S., et al.: Total variation based image deblurring with nonlocal self-similarity constraint. Electron. Lett. 47(16), 916–918 (2011)

    Article  Google Scholar 

  17. Hao, W., Li, J.: Alternating total variation and non-local total variation for fast compressed sensing magnetic resonance imaging. Electron. Lett. 51(22), 1740–1742 (2015)

    Article  Google Scholar 

  18. Tang, S., Gong, W., Li, W., et al.: Non-blind image deblurring method by local and nonlocal total variation models. Signal Process. 94(1), 339–349 (2014)

    Article  Google Scholar 

  19. Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7(4), 1937–1961 (2014)

    Article  MathSciNet  Google Scholar 

  20. Zhang, H., Yan, B., Wang, L., et al.: Sparse-view image reconstruction with nonlocal total variation. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 1–3 (2014)

  21. Osher, S., Burger, M., Goldfarb, D., et al.: An iterative regularization method for total variation-based image restoration. SIAM J. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  Google Scholar 

  22. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM J. Multiscale Model. Simul. 4(4), 1168–1200 (2006)

    Article  MathSciNet  Google Scholar 

  23. Li, W., Li, Q., Gong, W., et al.: Total variation blind deconvolution employing split Bregman iteration. J. Vis. Commun. Image Represent. 23(3), 409–417 (2012)

    Article  Google Scholar 

  24. Jia, R.Q., Zhao, H.: A fast algorithm for the total variation model of image denoising. Adv. Comput. Math. 33(2), 231–241 (2010)

    Article  MathSciNet  Google Scholar 

  25. Xie, Y., Zhang, W., Tao, D., et al.: Removing turbulence effect via hybrid total variation and deformation-guided kernel regression. IEEE Trans. Image Process. 25(10), 4943–4958 (2016)

    Article  MathSciNet  Google Scholar 

  26. Jia, R.Q., Zhao, H., Zhao, W.: Convergence analysis of the Bregman method for the variational model of image denoising. Appl. Comput. Harmon. Anal. 27(3), 367–379 (2009)

    Article  MathSciNet  Google Scholar 

  27. Cai, J.F., Osher, S., Shen, Z.: Convergence of the linearized Bregman iteration for ℓ1-norm minimization. Math. Comput. 78(268), 2127–2136 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Open Fund Project of the Artificial Intelligence Key Laboratory of Sichuan Province (Grant Nos. 2015RZY01, 2016RYY02), the Project of Sichuan Provincial Department of Education (Grant Nos. 14ZB0211, 17ZB0302), and the Scientific Research Project of Sichuan University of Science and Engineering (Grant No. 2015RC16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingju Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhang, H., Lin, G. et al. A new local and nonlocal total variation regularization model for image denoising. Cluster Comput 22 (Suppl 3), 7611–7627 (2019). https://doi.org/10.1007/s10586-018-2338-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2338-1

Keywords

Navigation