Skip to main content
Log in

Differential evolution with improved elite archive mutation and dynamic parameter adjustment

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Control parameters and mutation methods impact upon the global search ability of differential evolution algorithm (DE), and varying optimization issues own varying parameter settings. In this paper, an enhanced elite archive mutation strategy with self-adaption parameter adjustment (EAMSADE) is proposed to raise DE’s performance. The population’s diversity and the individual’s difference are considered by this paper to enhance the algorithm’s convergence property. EAMSADE amends the DE/rand/1 strategy by means of enhanced elite archive mutation and modifies parameters (crossover rate and scaling factor) adaptively which is based on quantitative analysis of individual variability and population diversity. To confirm the proposed EAMSADE’s performance, a suit of 21 benchmark functions from IEEE CEC2005 are utilized to carry out the experiment. The outcome of the experiment confirms that the proposed EAMSADE has got an overall improvement on convergence performance and global search ability compared to the other four amended DE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gong, Y.J., Chen, W.N., Zhan, Z.H., Zhang, J., Li, Y., Zhang, Q.: Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl. Soft Comput. 34, 286–300 (2015)

    Article  Google Scholar 

  2. Wang, L., Yang, B., Orchard, J.: Particle swarm optimization using dynamic tournament topology. Appl. Soft Comput. 48, 584–596 (2016)

    Article  Google Scholar 

  3. Li, H., Demeulemeester, E.: A genetic algorithm for the robust resource leveling problem. J. Sched. 19(1), 43–60 (2016)

    Article  MathSciNet  Google Scholar 

  4. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution—an updated survey. Swarm Evolut. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  5. Xu, Y., Wang, L., Wang, S.Y., Liu, M.: An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Neurocomputing 148, 260–268 (2015)

    Article  Google Scholar 

  6. Mallol-Poyato, R., Jiménez-Fernández, S., Díaz-Villar, P., Salcedo-Sanz, S.: Joint optimization of a microgrid’s structure design and its operation using a two-steps evolutionary algorithm. Energy 94, 775–785 (2016)

    Article  Google Scholar 

  7. Prado, R.S., Silva, R.C.P., Guimarães, F.G., Neto, O.M.: A new differential evolution based metaheuristic for discrete optimization. Int. J. Nat. Comput. Res. 1(2), 15–32 (2017)

    Article  Google Scholar 

  8. Liu, B., Aliakbarian, H., Ma, Z., Vandenbosch, G.A.E., Gielen, G., Excell, P.: An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Trans. Antennas Propag. 62(1), 7–18 (2014)

    Article  Google Scholar 

  9. Tang, L., Zhao, Y., Liu, J.: An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Trans. Evolut. Comput. 18(2), 209–225 (2014)

    Article  Google Scholar 

  10. Liu, B., Aliakbarian, H., Ma, Z., Vandenbosch, G.A.E., Gielen, G., Excell, P.: An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Trans. Antennas Propag. 62(1), 7–18 (2014)

    Article  Google Scholar 

  11. Nama, S., Saha, A.K.: A new hybrid differential evolution algorithm with self-adaptation for function optimization. Appl. Intell. 14, 1–15 (2017)

    Google Scholar 

  12. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Training and testing a self-adaptive multi-operator evolutionary algorithm for constrained optimization. Appl. Soft Comput. J. 26(3), 515–522 (2015)

    Article  Google Scholar 

  13. Elsayed, S., Sarker, R., Coello, C.C., Ray, T.: Adaptation of operators and continuous control parameters in differential evolution for constrained optimization. Soft Comput. 3, 1–22 (2017)

    Google Scholar 

  14. Wu, G., Mallipeddi, R., Suganthan, P.N., Wang, R., Chen, H.: Differential evolution with multi-population based ensemble of mutation strategies. Inf. Sci. 329, 329–345 (2016)

    Article  Google Scholar 

  15. Draa, A., Bouzoubia, S., Boukhalfa, I.: A sinusoidal differential evolution algorithm for numerical optimisation. Appl. Soft Comput. 27(27), 99–126 (2015)

    Article  Google Scholar 

  16. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM. 45(3), 1–33 (2013)

    MATH  Google Scholar 

  17. Sun, G., Peng, J., Zhao, R.: Differential evolution with individual-dependent and dynamic parameter adjustment. Soft Comput. 2, 1–27 (2017)

    Google Scholar 

  18. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evolut. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  19. Zou, D., Wu, J., Gao, L., Li, S.: A modified differential evolution algorithm for unconstrained optimization problems. Neurocomputing 120(6), 469–481 (2013)

    Article  Google Scholar 

  20. Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution with optional external archive. IEEE Trans. Evolut. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  21. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evolut. Comput. 15(1), 55–66 (2011)

    Article  Google Scholar 

  22. Yi, W., Gao, L., Li, X., Zhou, Y.: A new differential evolution algorithm with a hybrid mutation operator and self-adapting control parameters for global optimization problems. Appl. Intell. 42(4), 642–660 (2015)

    Article  Google Scholar 

  23. Wang, S., Li, Y., Yang, H.: Self-adaptive differential evolution algorithm with improved mutation mode. Soft Comput. 6, 1–15 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Key Research and Development Project of China (No. 2016YFC1401800) and the Scientific Research Project of NUDT (No. ZK16-03-46, No. ZK16-03-31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengquan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Zhang, L. & Wang, D. Differential evolution with improved elite archive mutation and dynamic parameter adjustment. Cluster Comput 22 (Suppl 4), 9347–9356 (2019). https://doi.org/10.1007/s10586-018-2163-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2163-6

Keywords

Navigation