Skip to main content
Log in

Fast global illumination of dynamic water surface based on two stage rendering

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Water simulation plays an important role in computer graphics, and its complex optical properties are very computationally intensive due to the variation of phenomena. In this paper, a fast-global illumination method of dynamic water surface with precise reflection and refraction is proposed using a two-stage rendering strategy. At the first stage, we generate an improved Secondary Texture Map (iSDT) based on the distortion of Perlin noise. Our method generates octaves of Perlin noise to construct random height of water surface. For fast rendering the reflection, we utilize 2D mesh modelling water surfaces and optimize the uniform mesh of surface by a layer of detail approach. A 3D geometries’ mirror reflection with respect to 3D perspective view is computed and stored as a texture map. Then the texture map is distorted by octaves of Perlin noise. At the second stage, we combine the iSDT with ray tracing strategy for computing global illumination above the water surface. Experimental results show that our method reduces the rendering time compared with the original ray tracing, and both the opaque and transparent geometries are rendered with plausible high-quality with correct reflection and refraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig..6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Génevaux, J.D., Galin, É., Guérin, E., et al.: Terrain generation using procedural models based on hydrology [J]. ACM Trans. Gr. (TOG) 32(4), 143 (2013)

    MATH  Google Scholar 

  2. Lee, M.W., Jung, C.H., Lee, M.G., et al.: Data definition of 3D character modelling and animation using H-Anim[J]. JoC 6(2), 19–29 (2015)

    Google Scholar 

  3. Monaghan, J.J.: Smoothed particle hydrodynamics [J]. Ann. Rev. Astron. Astrophys. 30(1), 543–574 (1992)

    Article  Google Scholar 

  4. Huang, C., Zhu, J., Sun, H., et al.: Parallel-optimizing SPH fluid simulation for realistic VR environments [J]. Comput. Anim. Virtual Worlds 26(1), 43–54 (2015)

    Article  Google Scholar 

  5. Chan, K.H., Ke, W., Im, S.K.: Particle–mesh coupling in the interaction of fluid and deformable bodies with screen space refraction rendering [J]. Comput. Anim. Virtual Worlds (2017). https://doi.org/10.1002/cav.1787

    Article  Google Scholar 

  6. Im, S.K., Chan, K.H.: Fast particle neighbor searching for unlimited scene with fluid refraction improvement [J]. Int. J. Model. Optim. 6(2), 71 (2016)

    Article  Google Scholar 

  7. Djado, K., Egli, R., Granger, F.: Particle-based drop animation on meshes in real time[J]. Comput. Anim. Virtual Worlds 23(3–4), 301–309 (2012)

    Article  Google Scholar 

  8. Liu, S., Xiong, Y.: Fast and stable simulation of virtual water scenes with interactions. Virtual Real. 17, 77 (2013)

    Article  Google Scholar 

  9. Wang, Y., Baboulin, M., Dongarra, J., et al.: A parallel solver for incompressible fluid flows [J]. Procedia Comput. Sci. 18, 439–448 (2013)

    Article  Google Scholar 

  10. Liu, S., Xiong, Y.: Fast and stable simulation of virtual water scenes with interactions [J]. Virtual Real. 17(1), 77–88 (2013)

    Article  Google Scholar 

  11. Macklin, M., Müller, M., Chentanez, N., et al.: Unified particle physics for real-time applications [J]. ACM Trans. Gr. (TOG) 33(4), 153 (2014)

    Google Scholar 

  12. Darles, E., Crespin, B., Ghazanfarpour, D., et al.: A survey of ocean simulation and rendering techniques in computer graphics. Comput. Gr. Forum 30(1), 43–60 (2011)

    Article  Google Scholar 

  13. Nielsen, M.B., Söderström, A., Bridson, R.: Synthesizing waves from animated height fields[J]. ACM Trans. Gr. (TOG) 32(1), 2 (2013)

    MATH  Google Scholar 

  14. Lee, H.M., Go, C., Lee, W.H.: An efficient algorithm for rendering large bodies of water [J]. Entertain. Comput. ICEC 2006, 302–305 (2006)

    Google Scholar 

  15. Bruneton, E., Neyret, F., Holzschuch, N.: Real-time realistic ocean lighting using seamless transitions from geometry to BRDF. Comput. Gr. Forum 29(2), 487–496 (2010)

    Article  Google Scholar 

  16. Simulation, I.H.: View-dependent tessellation and simulation of ocean surfaces [J]. Sci. World J. 3, 979418 (2014)

    Google Scholar 

  17. Saravanan, V., Pralhaddas, K.D., Kothari, D.P., et al.: An optimizing pipeline stall reduction algorithm for power and performance on multi-core CPUs [J]. Hum. Centric Comput. Inf. Sci. 5(1), 2 (2015)

    Article  Google Scholar 

  18. Liang, J., Gong, J., Li, Y.: Realistic rendering for physically based shallow water simulation in virtual geographic environments (VGEs) [J]. Ann GIS 21(4), 301–312 (2015)

    Article  Google Scholar 

  19. Smelik, R.M., Tutenel, T., Bidarra, R., et al.: A survey on procedural modelling for virtual worlds. Comput. Gr. Forum 33(6), 31–50 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Jilin of China (20170101005JC) and partial supported by Jilin province major science and technology bidding project (20170203004GX), Jilin province industrial innovation special funds projects (2016C091), Key Science and Technology Project of Jilin Province (20160204019GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yang, H., Xu, C. et al. Fast global illumination of dynamic water surface based on two stage rendering. Cluster Comput 22 (Suppl 4), 9069–9080 (2019). https://doi.org/10.1007/s10586-018-2063-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2063-9

Keywords

Navigation