Skip to main content
Log in

Hybrid two-dimensional dual tree—biorthogonal wavelet transform and discrete wavelet transform with fuzzy inference filter for robust remote sensing image compression

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Image compression plays a crucial role in digital image processing, it is also very important for efficient transmission and storage of images. In particular, remote sensing makes it possible to collect image data on dangerous or inaccessible areas (in Roy et al. Signal Process 128: 262–273, 2016). The methods are introduced in previous research for the efficient image compression with less error rate. The existing method is named as 2D-dual tree-complex wavelet transform (2D-DT-CWT) with fuzzy inference filter (FIF) based image compression algorithm which is used for the aid of remote sensing image compression. However it has issue with time complexity and lack in robust compression ratios. To avoid the above mentioned issues, in the proposed system, the approach enhanced called as hybrid 2D-oriented biorthogonal wavelet transform (2D-BWT) by using Windowed all phase digital filter (WAPDF) based on discrete wavelet transform (DWT) for robust image compression algorithm. The proposed system contains modules such as image compression using 2D-DWT, 2D-BWT using WAPDF for improving transformation, coefficient selection using FIF. Then context-adaptive binary arithmetic coding (CABAC) with lattice vector quantization (LVQ) is proposed for encoding the wavelet significant coefficients. DWT is used to focus on the provision of high quality compression images and BWT is used to improve the transformation process. The experimental results show that hybrid-2D-BDWT can help in significant improvement of the transform coding gain, specifically for remote sensing images having good resolution. In this research, the comparison of the proposed work is done with the existing 2D-oriented wavelet transform (2D-OWT) and 2D-DT-CWT. Also, the new compression method is simple, and the memory requirement in the operation process is very less. It provides robust image compression ratio and high quality images using transformation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sharif, M., Ayub, M.K., Raza, M., Mohsin, S.: Data reductionality technique for face recognition. Proc. Pakist. Acad. Sci. 48(4), 229–234 (2011)

    Google Scholar 

  2. Elharar, E.: A hybrid compression method for integral images using discrete wavelet transform and discrete cosine transform. IEEE J. Disp. Technol. 3(3), 321–325 (2007)

    Article  Google Scholar 

  3. Ye, L., Hou, Z.: Memory efficient multilevel discrete wavelet transform schemes for JPEG2000. IEEE Trans. Circuits Syst. Video Technol. 25(11), 1773–1785 (2015)

    Article  Google Scholar 

  4. Chang, Chuo.-Ling., Girod, Bernd.: Direction-adaptive discrete wavelet transform for image compression. IEEE Trans. Image Process. 16(5), 1289–1302 (2007)

    Article  MathSciNet  Google Scholar 

  5. Li, B., Yang, R., Jiang, H.: Remote-sensing image compression using two-dimensional oriented wavelet transform. IEEE Trans. Geosci. Remote Sens. 49(1), 236–250 (2011)

    Article  Google Scholar 

  6. Roy, A., Singha, J., Devi, S.S., Laskar, R.: Impulse noise removal using SVM classification based fuzzy filter from gray scale images. Signal Process. 128, 262–273 (2016)

    Article  Google Scholar 

  7. Suple, N.Y., Kharad, S.M.: Design of fuzzy inference system for contrast enhancement of color images. Int. J. Adv. Comput. Res. 3(3), 427 (2013)

    Google Scholar 

  8. Xue, X., Zheng, Y.: A method based on wavelet transform and discrete KL transform for color image filtering. In: Proceedings of the 2nd International Conference on Signal Processing Systems (ICSPS), vol. 2. IEEE (2010)

  9. Mahapatra, D.K., Jena, U.R.: Partitional k-means clustering based hybrid DCT-vector quantization for image compression. In: IEEE Conference on Information & Communication Technologies (ICT) (2013)

  10. Jiang, B., Aiping, Y., Chengyou, W., Zhengxin, H.: Implementation of biorthogonal wavelet transform using discrete cosine sequency filter. Int. J. Signal. Process. 6(4), 179–189 (2013)

    Google Scholar 

  11. Thakur, V.S., Gupta, S., Thakur, K.: Hybrid WPT-BDCT transform for high-quality image compression. IET Image Process. 11(10), 899–909 (2017)

    Article  Google Scholar 

  12. Bhattacharya, C., Mahapatra, P.R.: A discrete wavelet transform approach to multiresolution complex SAR image generation. IEEE Geosci. Remote Sens. Lett. 4(3), 416–420 (2007)

    Article  Google Scholar 

  13. Li, Y., Sun, J., Luo, H.: A neuro-fuzzy network based impulse noise filtering for gray scale images. Neurocomputing 127, 190–199 (2014)

    Article  Google Scholar 

  14. Suresh, A., Shunmuganathan, K.L.: Feature fusion technique for colour texture classification system based on gray level co-occurrence matrix. J. Comput. Sci. 8(12), 2106–2111 (2012)

    Article  Google Scholar 

  15. Sudhakar Ilango, S., et al.: Optimization using artificial bee colony based clustering approach for big data. Clust. Comput. (2018). https://doi.org/10.1007/s10586-017-1571-3

    Article  Google Scholar 

  16. Lee, C.-S., Guo, S.-M., Hsu, C.-Y.: Genetic-based fuzzy image filter and its application to image processing. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(4), 694–711 (2005)

    Article  Google Scholar 

  17. Nadernejad, E., Korhonen, J., Forchhammer, S., Burini, N.: Enhancing perceived quality of compressed images and video with anisotropic diffusion and fuzzy filtering. Signal Process. 28(3), 222–240 (2013)

    Google Scholar 

  18. Pensiri, F., Auwatanamongkol, S.: A lossless image compression algorithm using predictive coding based on quantized colors. WSEAS Trans. Signal Process. 8(2), 43–53 (2012)

    Google Scholar 

  19. Wu, G., Leeuw, J.D., Skidmore, A.K., Liu, Y., Prins, H.H.: Performance of Landsat TM in ship detection in turbid waters. Int. J. Appl. Earth Observ. Geoinf. 11(1), 54–61 (2009)

    Article  Google Scholar 

  20. Chowdhury, M.M.H., Khatun, A.: Image compression using discrete wavelet transform. IJCSI Int. J. Comput. Sci. Issues 9(4), 327–330 (2012)

    Google Scholar 

  21. Kim, Seung.Cheol., Kim, Eun.-Soo.: Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods. Appl. Opt. 48(6), 1030–1041 (2009)

    Article  Google Scholar 

  22. Karami, Azam., Yazdi, Mehran., Mercier, Grégoire.: Compression of hyperspectral images using discerete wavelet transform and tucker decomposition. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 5(2), 444–450 (2012)

    Article  Google Scholar 

  23. Zhou, Xiao., et al.: Implementation of biorthogonal wavelet transform using windowed APDF based on DCT. Int. J. Signal Process. Image Process. Pattern Recognit. 7(6), 1–16 (2014)

    Google Scholar 

  24. Farbiz, F., Menhaj, M.B., Motamedi, S.A., Hagan, M.T.: A new fuzzy logic filter for image enhancement. IEEE Trans. Syst. Man Cybern. 30(1), 110–119 (2000)

    Article  Google Scholar 

  25. Su, F., Wang, Z.H.: Implementation and design of all phase FIR filter in DCT domain. J. Tianjin Univ. (Sci. Technol.) 37(12), 1110–1114 (2004)

    Google Scholar 

  26. Rong, H.-J., Sundararajan, N., Huang, G.-B., Saratchandran, P.: Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst. 157(9), 1260–1275 (2006)

    Article  MathSciNet  Google Scholar 

  27. Yang, X., Toh, P.S.: Adaptive fuzzy multilevel median filter. IEEE Trans. Image Process. 4(5), 680–682 (1995)

    Article  Google Scholar 

  28. Suresh, A., Shunmuganathan, K.L.: Image texture classification using gray level co-occurrence matrix based statistical features. Eur. J. Sci. Res. 75(4), 591–597 (2012)

    Google Scholar 

  29. Mendoza, O., Melin, P., Licea, G.: A new method for edge detection in image processing using interval type-2 fuzzy logic. In: Proceedings of the IEEE International Conference on Granular Computing (2007)

  30. Van De Ville, D., Van Des Wekan, D., Philips, W.: Noise reduction by fuzzy image filtering. IEEE Trans. Fuzzy Syst. 11, 429–436 (2007)

    Article  Google Scholar 

  31. Vimal, S., Kalaivani, L., Kaliappan, M.: Collaborative approach on mitigating spectrum sensing data hijack attack and dynamic spectrum allocation based on CASG modeling in wireless cognitive radio networks. M. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1092-0

    Article  Google Scholar 

  32. Schulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., Kerre, E.E.: Fuzzy two-step filter for impulse noise reduction from color images. IEEE Trans. Image Process. 15(11), 3567–3578 (2006)

    Article  Google Scholar 

  33. Sharma, M.: Compression using Huffman coding. IJCSNS Int. J. Comput. Sci. Netw. Secur. 10(5), 133–141 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sudhakar Ilango.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudhakar Ilango, S., Seenivasagam, V. & Madhumitha, R. Hybrid two-dimensional dual tree—biorthogonal wavelet transform and discrete wavelet transform with fuzzy inference filter for robust remote sensing image compression. Cluster Comput 22 (Suppl 6), 13473–13486 (2019). https://doi.org/10.1007/s10586-018-1982-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1982-9

Keywords

Navigation