Skip to main content

Advertisement

Log in

The computation on compressor model of DC inverter based on the intelligent sensing algorithm of water heater system performance

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The DC inverter is introduced to heat pump water heater system. Exchanger and evaporator mathematical equations are proposed to describe the compressor. The double PI closed-loop strategy is utilized to control inverter heater system. Optimal parameters are verified using experimental methods for measuring heat transfer performance. The refrigerant charge quantity is optimized by the model and experimental data. The optimal value is 3.6 kg. Taking into account the influence of the energy efficiency ratio, output heating and output water on the system performance, the optimal length of capillary tube is 0.65 mm for DC inverter heat pump water heater system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Medgreen: Quasi-steady state modeling of an air source heat pump water heater. Energy Proc. 6, 325–330 (2011)

  2. Zhang, L., Guo, X., Li, W.: Numerical and experimental study on dynamic performance of heat pump water heater with electronic expansion valve. J. Energy Power Eng. 10, 1582–1588 (2012)

    Google Scholar 

  3. Chen, Z., Tao, W., Zhu, Y., Hu, P.: Performance analysis of air-water dual source heat pump water heater with heat recovery. Sci. Chin. Technol. 42(8), 937–944 (2012)

    Google Scholar 

  4. Huang, J., Li, S.: Application of variable frequency two-stage enthalpy-adding heat pumping technology in air source heat pump water heater. Chin. J. Refrig. Technol. 1 (2014)

  5. Sun, F., Ma, Y., Wei, Y., Li, D.: Energy analysis of transcritical carbon dioxide refrigeration cycle with an ejector. In: ICEET, pp. 719–723 (2011)

  6. Liu, K., Lv, J., Zhang, S.B., Yang, J.: Study of circuit number on the evaporator in CO\(_2\) heat pump water heater. Appl. Mech. Mater. 71–78, 2266–2270 (2011)

    Article  Google Scholar 

  7. Chen, G., Liang, L., Tang, L., et al.: Experimental investigation of an adjustable ejector for CO\(_2\) heat pump water heaters. J. Zhejiang Univ. 10(11), 1678–1682 (2009)

    Article  Google Scholar 

  8. Yang, Y., Wang, S., Li, J., Li, G.: Current study on gas cooler of CO\(_2\) transcritical refrigeration cycle. Refrig. Air-cond. 14(2), 04–10 (2014)

    Google Scholar 

  9. Li, Y., Gong, Y., Peng, J.: Performance analysis of CO2 transcritical refrigeration system units‘ improvement. J. Zhengzhou Univ. Light Ind. (Nat. Sci. Ed.) 29(2), 80–86 (2014)

    Google Scholar 

  10. Li, T., Wang, D., Zhong, J., et al.: Experimental study on CO\(_2\) house-hold heat pump water heater. Chem. Eng. 41(2), 9–12 (2013)

    Article  Google Scholar 

  11. Lv, J., Ren, Y., Yang, J., et al.: Experimental study on the influence of the water temperature to the performance of CO\(_2\) heat pump water heater. J. Refrig. 333(6), 73–77 (2012)

    Google Scholar 

  12. Chen, Q., Tong, Y., et al.: Experimental study on CO\(_2\) air source heat pump water heater. J. Zhejiang Univ. 46(4), 610–615 (2012)

    Google Scholar 

  13. Wang, Z., Gong, Y., Wu, X., et al.: Experimental research of transcritical CO\(_2\) heat pump system with double expansion valve. J. Refrig. 33(6), 57–61 (2012)

    Google Scholar 

  14. Bao, T., Lie, Y., Cai, C.: Experimental study on CO\(_2\) heat pump water heater with capillary tube as throttling device. Refrig. Technol. 2, 23–26 (2011)

    Google Scholar 

  15. Cai, C., Liu, Y., Su, Q.: Experimental study on heat pump water heater with transcritical CO\(_2\) cycle. Refrig. Air-Cond. 11(1), 66–70 (2011)

    Google Scholar 

  16. Gong, Y., Liang, Z., Hou, F., et al.: Experimental research of CO\(_2\) trans-critical cycle water source heat pump system. J. Zhengzhou Univ. Light Ind. (Nat. Sci.) 26(4), 41–44 (2011)

    Google Scholar 

  17. Jin, T., Lu, G., Zheng, Z.: Performance comparison of a R410a direct-current frequency heat pump water heater running at variable refrigerant flows. Fluid Mach. 39(5), 70–73 (2011)

    Google Scholar 

  18. Gong, Y., Liang, Z.: Experimental research of trans-critical CO\(_2\) heat pump system performance. Fluid Mach. 39(9), 66–69 (2011)

    Google Scholar 

  19. Jiang, Y., Ma, Y., Li, M., Fu, L.: An experimental study of trans-critical CO\(_2\) water heat pump using compact tube-in-tube heat exchangers. Energy Convers. Manage. 76, 92–100 (2013)

    Article  Google Scholar 

  20. Yokoyama, R., Wakui, T., Kamakari, J., Takemura, K.: Performance analysis of a CO\(_2\) heat pump water heating system under a daily change in a standardizeddemand. Energy 35, 718–728 (2010)

    Article  Google Scholar 

  21. Fornasieri, E., Girotto, S., Minetto, S.: CO\(_2\) heat pump for domestic hot water. In: 8th IIR Gustav Lorentzen Conference on Natural Working Fluids, Copenhagen, 7–10 September (2008)

  22. Minetto, S.: Theoretical and experimental analysis of a CO\(_2\) heat pump for domestic hot water. Int. J. Refrig. 34, 742–751 (2011)

    Article  Google Scholar 

  23. Wang, T., Dharkar, S., Kurtulus, O., Groll, E.A., Yazawa, K.: Experimental study of a CO\(_2\) thermal battery for simultaneous cooling and heating applications. In: Proceedings of 15th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, R2701 (2014)

  24. Jensen, L.H., Holten, A., Blarke, M.B., Groll, E.A., Shakouri, A., Yazawa, K.: Dynamicanalysis of a dual-mode CO\(_2\) heat pump with both hot and cold thermal storage. In: Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, IMECE2013-62894 (2013)

  25. Huang, Z., Chen, W., Tu, J.: Fuzzy temperature control arithmetic for household variable frequency air-conditioner. J. Univ. Shanghai Sci. Technol. 35(2), 169–174 (2013)

    Google Scholar 

  26. Liu, X., Hao, X., Zhang, D.: Multi-strategy wide-frequency control technology of DC air conditioner PMSM. J. Sichuan Ordnance 34(6), 97–100 (2013)

    Google Scholar 

  27. Guo, Y., Chen, M., Chen, N.: Rotor speed estimate method for sensorless vector control of BLDCM. Control Eng. Chin. 20(2), 348–352 (2013)

    Google Scholar 

  28. Wang, W., Li, T., Wu, S.: The design of electrical control system of DC inverter air conditioner. Small Spec. Electr. Mach. 41(11), 7–12 (2013)

    Google Scholar 

  29. Zhang, S., Liu, G., Wang, W.: Parameter identification methods for conversion air conditioner compressor motor. J. Power Supply 1, 95–100 (2013)

    Google Scholar 

  30. Wang, N., Lu, F., Yang, X., et al.: Application of a three-phase three-level rectifier inverter air conditioner. Electr. Autom. 35(2), 17–20 (2013)

    Google Scholar 

  31. Cao, C., Jiang, S., et al.: The design of inverter air-conditioner PWM rectifier. Electr. Appl. 4, 48–52 (2013)

    Google Scholar 

  32. Li, X., Ji, J., Ma, S., et al.: Development of sensorless sinusoidal inverter drive controller for central air-conditioning compressor. Compress. Technol. 6, 21–25 (2013)

    Google Scholar 

  33. Liu, X., Zhao, D.: Study on PMSM field oriented inventor regulating speed techngoloy. Mach. Tool Hydraul. 38, 106–108 (2010)

    Google Scholar 

Download references

Acknowledgements

Supported by NSFC (51075321), (61106107) and Guangdong Science and Technology Project (2016A040403028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuepeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hao, X. & Zhang, D. The computation on compressor model of DC inverter based on the intelligent sensing algorithm of water heater system performance. Cluster Comput 22 (Suppl 3), 5165–5173 (2019). https://doi.org/10.1007/s10586-017-1130-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1130-y

Keywords

Navigation