Skip to main content
Log in

A novel approximate finite-time convergent guidance law with actuator fault

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In this paper, a novel approximate finite-time convergent guidance law for missiles is presented to accurately intercept maneuvering targets when the actuators cannot perform as well as usual. First, the governing equations are proposed according to the relationship between missile and target at engagement phase, and a typical nonlinear mathematic model of actuator efficiency is built. Then, an adaptive multiple-input-multiple-output guidance law based on super-twisting algorithm is proposed to drive the line-of-sight angular rate to converge in a small region around zero in finite time. According to the proposed adaptive law, the information about maneuverability of target is not necessary, and the parameter drift problem is also addressed by dead-time control technique. Moreover, the proposed formulation is validated by means of the detailed stability analysis with strict Lyapunov function and simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murtaugh, S.A., Criel, H.E.: Fundamentals of proportional navigation. IEEE Spectr. 3, 75–85 (1996)

    Article  Google Scholar 

  2. Budiyono, A., Rachman, H.: Proportional guidance and CDM control synthesis for a short-range homing surface-to-air missile. J. Aerosp. Eng. 25, 168–177 (2011)

    Article  Google Scholar 

  3. Nesline, F.W., Zarchan, P.: A new look at classical versus modern homing missile guidance. J. Guid. Control Dyn. 4, 78–85 (1981)

    Article  Google Scholar 

  4. Zarchan, P.: Tactical and Strategic Missile Guidance. American Institute of Aeronautics and Astronautics Publications, New York (1998)

    Google Scholar 

  5. Zhou, D., Sun, S., Teo, K.L.: Guidance laws with finite time convergence. J. Guid. Control Dyn. 32, 1838–1846 (2009)

    Article  Google Scholar 

  6. Yang, C.D., Chen, H.Y.: Nonlinear robust guidance law for homing missiles. J. Guid. Control Dyn. 21, 882–890 (1998)

    Article  Google Scholar 

  7. Yang, C.D., Chen, H.Y.: Three-dimensional nonlinear guidance law. Int. J. Robust Nonlinear Control 11, 109–129 (1998)

    Article  MathSciNet  Google Scholar 

  8. Liu, L.J., Shen, Y.: Three-dimension guidance law and capture region analysis. IEEE Trans. Aerosp. Electron. Syst. 48, 419–429 (2012)

    Article  Google Scholar 

  9. Yan, H., Ji, H.B.: Guidance laws based on input-to-state stability and high-gain observers. IEEE Trans. Aerosp. Electron. Syst. 48, 2518–2529 (2012)

    Article  Google Scholar 

  10. Babu, K.R., Sarma, I.G., Swamy, K.N.: Switched bias proportional navigation for homing guidance against highly maneuvering targets. J. Guid. Control Dyn. 17, 1357–1363 (1994)

    Article  Google Scholar 

  11. Brierley, S.D., Longchamp, R.: Application of sliding-mode control to air-air interception problem. IEEE Trans. Aerosp. Electron. Syst. 26, 306–325 (1990)

    Article  Google Scholar 

  12. Moon, J., Kim, K., Kim, Y.: Design of missile guidance law via variable structure control. J. Guid. Control Dyn. 24, 659–664 (2001)

    Article  Google Scholar 

  13. Zhou, D., Mu, C., Xu, W.: Adaptive sliding-mode guidance of a homing missile. J. Guid. Control Dyn. 22, 589–594 (1999)

    Article  Google Scholar 

  14. He, S., Lin, D.: Continuous robust guidance law for intercepting maneuvering targets. Jpn. Soc. Aeronaut. Space Sci. 58, 163–169 (2015)

    Google Scholar 

  15. He, S., Lin, D., Wang, J.: Continuous second-order sliding mode based impact angle guidance law. Aerosp. Sci. Technol. 41, 199–208 (2015)

    Article  Google Scholar 

  16. Phadke, S.B., Talole, S.E.: Sliding mode and inertial delay control based missile guidance. IEEE Trans. Aerosp. Electron. Syst. 48, 3331–3346 (2012)

    Article  Google Scholar 

  17. Zhang, Z., Li, S., Luo, S.: Terminal guidance laws of missile based on ISMC and NDOB with impact angle constraint. Aerosp. Sci. Technol. 31, 30–41 (2013)

    Article  Google Scholar 

  18. Zhu, Z., Xu, D., Liu, J., Xia, Y.: Missile guidance law based on extended state observer. IEEE Trans. Ind. Electron. 60, 5882–5891 (2013)

    Article  Google Scholar 

  19. Liang, Y.W., Ting, L.W., Lin, L.G.: Study of reliable control via an integral-type sliding mode control scheme. IEEE Trans. Ind. Electron. 59, 3062–3068 (2012)

    Article  Google Scholar 

  20. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Ann. Rev. Control 32, 229–252 (2008)

    Article  Google Scholar 

  21. Zhu, Z., Xia, Y., Fu, M., Wang, S.: Fault tolerant control for missile guidance laws with finite-time convergence. In: 23rd Chinese Control and Decision Conference, Mianyang, China, pp. 23–25 May (2011)

  22. Liao, F., Ji, H.: Guidance laws with input constraints and actuator failures. Asian J. Control 10, 1002–1199 (2015)

    Google Scholar 

  23. Cong, B.L., Chen, Z., Liu, X.D.: On adaptive sliding mode control without switching gain overestimation. Int. J. Robust Nonlinear Control 24, 515–531 (2014)

    Article  MathSciNet  Google Scholar 

  24. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)

    Article  MathSciNet  Google Scholar 

  25. Levant, A.: Principles of 2-sliding mode design. Automatica 43, 576–586 (2007)

    Article  MathSciNet  Google Scholar 

  26. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Smooth second-order sliding modes: missile guidance application. Automatica 43, 1470–1477 (2007)

    Article  MathSciNet  Google Scholar 

  27. Shtessel, Y., Taleb, M., Plestan, F.: A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48, 759–769 (2012)

    Article  MathSciNet  Google Scholar 

  28. Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49, 39–47 (2013)

    Article  MathSciNet  Google Scholar 

  29. Gonzalez, T., Moreno, J.A., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Autom. Control 57, 2100–2105 (2013)

    Article  MathSciNet  Google Scholar 

  30. Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approach. Automatica 50, 984–988 (2014)

    Article  MathSciNet  Google Scholar 

  31. Garnell, P.: Guided Weapon Control System. Pergamon, New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Funding

This work was supported by the Natural Science Foundation of China (Grant No. 61172182).

Appendix I : Proof of Theorem 1

Appendix I : Proof of Theorem 1

Substituting Eq. (12) for Eq. (11) yields:

$$\begin{aligned} {\dot{{\varvec{x}}}}= & {} -k_1 \left( t \right) \frac{{\varvec{x}}}{\left\| {\varvec{x}} \right\| ^{1/2}}-k_2 \left( t \right) {\varvec{x}}+{{\varvec{\eta }}} \nonumber \\ {\dot{{\varvec{\eta }}}}= & {} {\dot{{\varvec{d}}}}-k_3 \left( t \right) \frac{{\varvec{x}}}{\left\| {\varvec{x}} \right\| ^{1/2}}-k_4 \left( t \right) {\varvec{x}} \end{aligned}$$
(19)

In order to facilitate the stability analysis, we introduced the following auxiliary vectors:

$$\begin{aligned} {\varvec{\xi }}_1 =\left( {\frac{L}{\left\| {\varvec{x}} \right\| }} \right) ^{1/2}{\varvec{x}}, {\varvec{\xi }}_2 ={\varvec{Lx}}, {\varvec{\xi }}_3 ={\varvec{\eta }} , (\forall x\ne 0) \end{aligned}$$
(20)

Computing the time derivative of Eq. (20) yields the following equation:

$$\begin{aligned} \left[ {{\begin{array}{l} {\dot{{\varvec{\xi }}}_1 } \\ {\dot{{\varvec{\xi }}}_2 } \\ {\dot{{\varvec{\xi }}}_3 } \\ \end{array} }} \right] =\left[ {{\begin{array}{c} {\frac{0.5\dot{{L}}{\varvec{x}}}{\left( {L\left\| {\varvec{x}} \right\| } \right) ^{1/2}}+\left( {\frac{L}{\left\| {\varvec{x}} \right\| }} \right) ^{1/2}\left( {{\varvec{I}}_{2\times 2} -\frac{{\varvec{xx}}^{T}}{2\left\| {\varvec{x}} \right\| ^{2}}} \right) \dot{{\varvec{x}}}} \\ {\dot{{L}}{\varvec{x}}+{L}\dot{{\varvec{x}}}} \\ {-c_3 \frac{L{\varvec{x}}}{\left\| {\varvec{x}} \right\| }-c_4 {L}^{2}{\varvec{x}}+\dot{{\varvec{d}}}} \\ \end{array} }} \right] \end{aligned}$$
(21)

It follows from transformation (20) that

$$\begin{aligned} \frac{{\varvec{x}}}{\left\| {\varvec{x}} \right\| }=\frac{{\varvec{\xi }}_1 }{\left\| {{\varvec{\xi }}_1 } \right\| }=\frac{{\varvec{\xi }}_2 }{\left\| {{\varvec{\xi }}_2 } \right\| },\left( {\frac{L}{\left\| {\varvec{x}} \right\| }} \right) ^{1/2}=\frac{L}{\left\| {{\varvec{\xi }}_1 } \right\| } \end{aligned}$$
(22)

Furthermore, according to Eqs. (19) and (22), it could be concluded that

$$\begin{aligned} \dot{{\varvec{x}}}=-c_1 {\varvec{\xi }}_1 -c_2 {\varvec{\xi }}_2 +{\varvec{\xi }}_3 \end{aligned}$$
(23)

From Eqs. (22) and (23), one can imply that

$$\begin{aligned} \left( {{\varvec{I}}_{2\times 2} -\frac{{\varvec{xx}}^{T}}{2\left\| {\varvec{x}} \right\| ^{2}}} \right) \dot{{\varvec{x}}}= & {} \left[ {{\varvec{\xi }}_3 -\frac{{\varvec{\xi }} _1 {\varvec{\xi }}_1^T {\varvec{\xi }}_3 }{2\left\| {{\varvec{\xi }}_1 } \right\| }} \right] \nonumber \\&-\sum _{i=1}^2 {c_i \left( {{\varvec{I}}_{2\times 2} -\frac{{\varvec{\xi }}_1 {\varvec{\xi }}_1^T }{2\left\| {{\varvec{\xi }}_1 } \right\| ^{2}}} \right) {\varvec{\xi }}_i } \nonumber \\= & {} \left[ {{\varvec{\xi }}_3 -\frac{{\varvec{\xi }}_1 {\varvec{\xi }}_1^T {\varvec{\xi }}_3 }{2\left\| {{\varvec{\xi }}_1 } \right\| }} \right] -\frac{c_1 {\varvec{\xi }}_1 +c_2 {\varvec{\xi }}_2 }{2}\nonumber \\ \end{aligned}$$
(24)

Substituting Eqs. (22)–(24) into (21) yields the following equation:

$$\begin{aligned} \dot{{\varvec{\xi }}}=-\frac{L}{2\left\| {{\varvec{\xi }}_1 } \right\| }{\varvec{A}}_1 {\varvec{\xi }} -{\varvec{LA}}_2 {\varvec{\xi }} +{\varvec{A}}_3 \end{aligned}$$
(25)

where \({\varvec{\xi }} =\left[ {{\varvec{\xi }}_1 \left| {{\varvec{\xi }}_2 \left| {{\varvec{\xi }}_3 } \right. } \right. } \right] \in {\mathbb {R}}^{6}\) is a six-dimensional column vector. The matrices \({\varvec{A}}_1 \), \({\varvec{A}}_2 \), \({\varvec{A}}_3 \) are calculated below:

$$\begin{aligned} {\varvec{A}}_1= & {} \left[ {{\begin{array}{lll} {c_1 {\varvec{I}}_{2\times 2} }&{} {c_2 {\varvec{I}}_{2\times 2} }&{} {-2{\varvec{I}}_{2\times 2} } \\ {{\varvec{{0}}}_{2\times 2} }&{} {{\varvec{{0}}}_{2\times 2} }&{} {{\varvec{{0}}}_{2\times 2} } \\ {2c_3 {\varvec{I}}_{2\times 2} }&{} {{{\varvec{0}}}_{2\times 2} }&{} {{{\varvec{0}}}_{2\times 2} } \\ \end{array} }} \right] ,\nonumber \\ {\varvec{A}}_2= & {} \left[ {{\begin{array}{lll} {{{\varvec{0}}}_{2\times 2} }&{} {{{\varvec{0}}}_{2\times 2} }&{} {{{\varvec{0}}}_{2\times 2} } \\ {c_1 {\varvec{I}}_{2\times 2} }&{} {c_2 {\varvec{I}}_{2\times 2} }&{} {-{\varvec{I}}_{2\times 2} } \\ {{{\varvec{0}}}_{2\times 2} }&{} {c_4 {\varvec{I}}_{2\times 2} }&{} {{{\varvec{0}}}_{2\times 2} } \\ \end{array} }} \right] \nonumber \\ {\varvec{A}}_3= & {} \frac{\dot{L}}{2L}\left[ {{\begin{array}{l} {{\varvec{\xi }}_1 } \\ {2{\varvec{\xi }}_2 } \\ {{{\varvec{0}}}_2 } \\ \end{array} }} \right] +\left[ {{\begin{array}{l} {{{\varvec{0}}}_2 } \\ {{{\varvec{0}}}_2 } \\ {\dot{{\varvec{d}}}} \\ \end{array} }} \right] -\left[ {{\begin{array}{c} {L{\varvec{\xi }}_1 {\varvec{\xi }}_1^T {\varvec{\xi }} _3 /\left( {2\left\| {{\varvec{\xi }}_1 } \right\| ^{3}} \right) } \\ {{\varvec{0}}}_2 \\ {{\varvec{0}}}_2 \\ \end{array} }} \right] \nonumber \\ \end{aligned}$$
(26)

For system (21), the Lyapunov function is considered as follow,

$$\begin{aligned} V= & {} 2c_3 \left\| {{\varvec{\xi }}_1 } \right\| ^{2}+c_4 \left\| {{\varvec{\xi }}_2 } \right\| ^{2}\nonumber \\&+\frac{1}{2}\left\| {{\varvec{\xi }}_3 } \right\| ^{2}+\frac{1}{2}\left\| {c_1 {\varvec{\xi }}_1 +c_2 {\varvec{\xi }}_2 -{\varvec{\xi }}_3 } \right\| ^{2} \end{aligned}$$
(27)

which could be rewritten in the following matrix format,

$$\begin{aligned} V=\frac{1}{2}{\varvec{\xi }}^{T}{\varvec{P}}{\varvec{\xi }} \end{aligned}$$
(28)

where positive definite matrix \({\varvec{P}}\in {\mathbb {R}}^{6\times 6}\) is defined as

$$\begin{aligned} {\varvec{P}}=\left[ {{\begin{array}{ccc} {\left( {4c_3 +c_1^2 } \right) {\varvec{I}}_{2\times 2} }&{} {c_1 c_2 {\varvec{I}}_{2\times 2} }&{} {-c_1 {\varvec{I}}_{2\times 2} } \\ {c_1 c_2 {\varvec{I}}_{2\times 2} }&{} {\left( {2c_4 +c_2^2 } \right) {\varvec{I}}_{2\times 2} }&{} {-c_2 {\varvec{I}}_{2\times 2} } \\ {-c_1 {\varvec{I}}_{2\times 2} }&{} {-c_2 {\varvec{I}}_{2\times 2} }&{} {2{\varvec{I}}_{2\times 2} } \\ \end{array} }} \right] \end{aligned}$$
(29)

Evaluating the time derivative of V yields the following equation:

$$\begin{aligned} \dot{V}=-\frac{L}{2\left\| {{\varvec{\xi }}_1 } \right\| }{\varvec{\xi }}^{T}{\varvec{B}}_1 {\varvec{\xi }} -L{\varvec{\xi }} ^{T}{\varvec{B}}_2 {\varvec{\xi }} +\bar{{V}} \end{aligned}$$
(30)

where \({\varvec{B}}_1 =0.5\left( {{\varvec{A}}_1^T {\varvec{P}}+{\varvec{PA}}_1 } \right) \), \({\varvec{B}}_2 =0.5\left( {{\varvec{A}}_2^T {\varvec{P}}+{\varvec{PA}}_2 } \right) \), and \(\bar{{V}}={\varvec{\xi }}^{T}{\varvec{PA}}_3 \).

Let \({\varvec{A}}_{31} =\frac{\dot{L}}{2L}\left[ {{\varvec{\xi }}_1 \left| {2{\varvec{\xi }}_2 \left| {{{\varvec{0}}}_2 } \right. } \right. } \right] \), \({\varvec{A}}_{32} =\left[ {{{\varvec{0}}}_2 \left| {{{\varvec{0}}}_2 \left| {\dot{{\varvec{d}}}} \right. } \right. } \right] \), \(A_{33} =-\left[ {\frac{L{\varvec{\xi }}_1 {\varvec{\xi }}_1^T {\varvec{\xi }}_3 }{2\left\| {{\varvec{\xi }}_1 } \right\| ^{3}}\left| {{{\varvec{0}}}_2 \left| {{{\varvec{0}}}_2 } \right. } \right. } \right] \), it is possible to verify that \({\varvec{A}}_3 = {\varvec{A}}_{31} +{\varvec{A}}_{32} +{\varvec{A}}_{33} \), then it is implied that \(\bar{{V}}=\bar{{V}}_1 +\bar{{V}}_2 +\bar{{V}}_3 \) with \(\bar{{V}}_i ={\varvec{\xi }}^{T}{\varvec{PA}}_{3i} \), \(i=1,2,3\), with

$$\begin{aligned} \bar{{V}}_1= & {} \frac{\dot{L}}{2L}\left[ \left( {4c_3 +c_1^2 } \right) \left\| {{\varvec{\xi }}_1 } \right\| ^{2}+3c_1 c_2 {\varvec{\xi }}_1^T {\varvec{\xi }}_2 -c_1 {\varvec{\xi }}_1^T {\varvec{\xi }}_3 \right. \nonumber \\&\left. +\,2\left( {2c_4 +c_2^2 } \right) \left\| {{\varvec{\xi }}_2 } \right\| ^{2}-2c_2 {\varvec{\xi }}_2^T {\varvec{\xi }}_3 \right] \end{aligned}$$
(31)
$$\begin{aligned} \bar{{V}}_2= & {} \dot{{\varvec{d}}}^{T}\left[ {2{\varvec{\xi }}_3 -c_1 {\varvec{\xi }}_1 -c_2 {\varvec{\xi }}_2 } \right] \end{aligned}$$
(32)
$$\begin{aligned} \bar{{V}}_3= & {} -\frac{L}{2\left\| {{\varvec{\xi }}_1 } \right\| }\left[ \left( {4c_3 +c_1^2 } \right) {\varvec{\xi }}_1^T {\varvec{\xi }}_3 \right. \nonumber \\&\left. +\frac{c_1 c_2 {\varvec{\xi }}_2^T {\varvec{\xi }}_1 {\varvec{\xi }}_1^T {\varvec{\xi }}_3 }{\left\| {{\varvec{\xi }}_1 } \right\| ^{2}}-\frac{c_1 {\varvec{\xi }}_3^T {\varvec{\xi }}_1 {\varvec{\xi }}_1^T {\varvec{\xi }}_3 }{\left\| {{\varvec{\xi }}_1 } \right\| ^{2}} \right] \end{aligned}$$
(33)

It follows from Eqs. (31) and (32) that

$$\begin{aligned} \bar{{V}}_1\le & {} \frac{\dot{L}}{2L}{\varvec{\xi }}^{T}{\varvec{P}}_1 {\varvec{\xi }} \end{aligned}$$
(34)
$$\begin{aligned} \bar{{V}}_2\le & {} \sqrt{4+c_1^2 +c_2^2 }\left\| {\dot{{\varvec{d}}}} \right\| \left\| {\varvec{\xi }} \right\| \le \sqrt{4+c_1^2 +c_2^2 }\left\| {\varvec{\xi }} \right\| \delta \end{aligned}$$
(35)

where \({\varvec{P}}_1 =\text {diag}\left( {\vartheta _1 ,\vartheta _2 ,\vartheta _3 } \right) \otimes {\varvec{I}}_{2\times 2} \), \(\vartheta _1 =4c_3 +c_1^2 +1.5c_1 c_2 +0.5c_1 \), \(\vartheta _2 =4c_4 +2c_2^2 +1.5c_1 c_2 +c_2 \), \(\vartheta _3 =0.5c_1 +c_2 \), and \(\otimes \) stands for the Kronecker product. It also follows from Eq. (20) that \({\varvec{\xi }}_2 =\left\| {{\varvec{\xi }}_1 } \right\| {\varvec{\xi }}_1 \). Moreover, considering the fact that

$$\begin{aligned} \frac{{\varvec{\xi }}_3^T {\varvec{\xi }}_1 {\varvec{\xi }}_1^T {\varvec{\xi }}_3 }{\left\| {{\varvec{\xi }}_1 } \right\| ^{2}}=\frac{\left( {{\varvec{\xi }}_1^T {\varvec{\xi }}_3 } \right) ^{2}}{\left\| {{\varvec{\xi }}_1 } \right\| ^{2}}\le \left\| {{\varvec{\xi }}_3 } \right\| ^{2} \end{aligned}$$
(36)

and it can then be concluded that

$$\begin{aligned} \bar{{V}}_3\le & {} -\frac{L}{2\left\| {{\varvec{\xi }}_1 } \right\| }\left[ {\left( {4c_3 +c_1^2 } \right) {\varvec{\xi }}_1^T {\varvec{\xi }}_3 -c_1 \left\| {{\varvec{\xi }}_3 } \right\| ^{2}} \right] \nonumber \\&-\frac{Lc_1 c_2 }{2}{\varvec{\xi }}_1^T {\varvec{\xi }}_3 \end{aligned}$$
(37)

Substituting Eqs. (34), (35) and (37) for (30) yields the following,

$$\begin{aligned} \dot{V}\le -\frac{L}{2\left\| {{\varvec{\xi }}_1 } \right\| }{\varvec{\xi }}^{T}{\varvec{P}}_2 {\varvec{\xi }} -L{\varvec{\xi }}^{T}{\varvec{P}}_3 {\varvec{\xi }} +\bar{{V}}_1 +\bar{{V}}_2 \end{aligned}$$
(38)

where

$$\begin{aligned} {\varvec{P}}_2= & {} \left[ {{\begin{array}{ccc} {c_1 \left( {c_1^2 +2c_3 } \right) }&{} 0&{} {-c_1^2 } \\ 0&{} {c_1 \left( {5c_2^2 +2c_4 } \right) }&{} {-3c_1 c_2 } \\ {-c_1^2 }&{} {-3c_1 c_2 }&{} {c_1 } \\ \end{array} }} \right] \otimes {\varvec{I}}_{2\times 2}\nonumber \\ \end{aligned}$$
(39)
$$\begin{aligned} {\varvec{P}}_3= & {} \left[ {{\begin{array}{ccc} {c_1 \left( {2c_1^2 +c_3 } \right) }&{} 0&{} 0 \\ 0&{} {c_2 \left( {c_2^2 +c_4 } \right) }&{} {-c_2^2 } \\ 0&{} {-c_2^2 }&{} {c_2 } \\ \end{array} }} \right] \otimes {\varvec{I}}_{2\times 2} \end{aligned}$$
(40)

It can be verified that matrices \({\varvec{P}}_1 \), \({\varvec{P}}_2 \) and \({\varvec{P}}_3 \) are definitely positive. Then, one can imply that

$$\begin{aligned} \lambda _{\min } \left( {{\varvec{P}}_i } \right) \left\| {\varvec{\xi }} \right\| ^{2}\le {\varvec{\xi }}^{T}{\varvec{P}}_i {\varvec{\xi }} \le \lambda _{\max } \left( {{\varvec{P}}_i } \right) \left\| {\varvec{\xi }} \right\| ^{2} \end{aligned}$$
(41)

Similarly, for positive matrix \({\varvec{P}}\) in Eq. (28), it can be concluded that

$$\begin{aligned} \lambda _{\min } \left( {\varvec{P}} \right) \left\| {\varvec{\xi }} \right\| ^{2}\le 2V\le \lambda _{\max } \left( {\varvec{P}} \right) \left\| {\varvec{\xi }} \right\| ^{2} \end{aligned}$$
(42)

It follows from inequalities of Eqs. (36) and (37) that

$$\begin{aligned} \frac{2\lambda _{\min } \left( {{\varvec{P}}_i } \right) V}{\lambda _{\max } \left( {\varvec{P}} \right) }\le {\varvec{\xi }}^{T}{\varvec{P}}_i {\varvec{\xi }} \le \frac{2\lambda _{\max } \left( {{\varvec{P}}_i } \right) V}{\lambda _{\min } \left( {\varvec{P}} \right) } \end{aligned}$$
(43)

Substituting Eqs. (34), (35) and (43) for (38) yields

$$\begin{aligned} \dot{V}\le & {} \left[ {\frac{\dot{L}\lambda _{\max } \left( {{\varvec{P}}_1 } \right) }{L\lambda _{\min } \left( {\varvec{P}} \right) }-\frac{2L\lambda _{\min } \left( {{\varvec{P}}_3 } \right) }{\lambda _{\max } \left( {\varvec{P}} \right) }-\frac{L\lambda _{\min } \left( {{\varvec{P}}_2 } \right) }{\left\| {{\varvec{\xi }} _1 } \right\| \lambda _{\max } \left( {\varvec{P}} \right) }} \right] V\nonumber \\&+\sqrt{4+c_1^2 +c_2^2 }\left\| {\varvec{\xi }} \right\| \delta \end{aligned}$$
(44)

It follows from the fact \(\left\| {{\varvec{\xi }}_1 } \right\| \le \left\| {\varvec{\xi }} \right\| \) and \(\sqrt{\frac{2V}{\lambda _{\max } \left( {\varvec{P}} \right) }}\le \left\| {\varvec{\xi }} \right\| \le \sqrt{\frac{2V}{\lambda _{\min } \left( {\varvec{P}} \right) }}\) that

$$\begin{aligned} \dot{V}\le -\left( {L\delta _2 -\frac{\dot{L}}{L}\delta _1 } \right) V-\left( {L\delta _3 -\delta _4 \delta } \right) V^{1/2} \end{aligned}$$
(45)

where \(\delta _1 =\frac{\lambda _{\max } \left( {{\varvec{P}}_1 } \right) }{\lambda _{\min } \left( {\varvec{P }}\right) }\), \(\delta _2 =\frac{2\lambda _{\min } \left( {{\varvec{P}}_3 } \right) }{\lambda _{\max } \left( {\varvec{P}} \right) }\), \(\delta _3 =\frac{\lambda _{\min } \left( {{\varvec{P}}_2 } \right) \sqrt{\lambda _{\min } \left( {\varvec{P}} \right) }}{\sqrt{2}\lambda _{\max } \left( {\varvec{P}} \right) }\), \(\delta _4 =\sqrt{\frac{2\left( {4+c_1^2 +c_2^2 } \right) }{\lambda _{\min } \left( {\varvec{P}} \right) }}\).

Since \(\dot{L}=m>0\) when \(\left\| {\varvec{x}} \right\| >\varepsilon \), it can be determined that \(\beta _1 =L\delta _2 -\frac{\dot{L}}{L}\delta _1 >0\), \(\beta _2 =L\delta _3 -\delta _4 \delta >0\) can be calculated in finite time. After that, Eq. (45) can be reduced to

$$\begin{aligned} \dot{V}+\beta _1 V+\beta _2 V^{1/2}\le 0 \end{aligned}$$
(46)

Then, under the condition of \(\left\| {\varvec{x}} \right\| >\varepsilon \), Lemma1 and state transformation (20), it is concluded that the system state \({\varvec{x}}\) would converge into a small area around zero in finite time. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Ji, Y., Lin, D. et al. A novel approximate finite-time convergent guidance law with actuator fault. Cluster Comput 22 (Suppl 4), 10095–10107 (2019). https://doi.org/10.1007/s10586-017-1114-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1114-y

Keywords

Navigation