Skip to main content

Advertisement

Log in

Detection of cancer metastasis: past, present and future

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The clinical importance of metastatic spread of cancer has been recognized for centuries, and melanoma has loomed large in historical descriptions of metastases, as well as the numerous mechanistic theories espoused. The “fatal black tumor” described by Hippocrates in 5000 BC that was later termed “melanose” by Rene Laennec in 1804 was recognized to have the propensity to metastasize by William Norris in 1820. And while the prognosis of melanoma was uniformly acknowledged to be dire, Samuel Cooper described surgical removal as having the potential to improve prognosis. Subsequent to this, in 1898 Herbert Snow was the first to recognize the potential clinical benefit of removing clinically normal lymph nodes at the time of initial cancer surgery. In describing “anticipatory gland excision,” he noted that “it is essential to remove, whenever possible, those lymph glands which first receive the infective protoplasm, and bar its entrance into the blood, before they have undergone increase in bulk”. This revolutionary concept marked the beginning of a debate that rages today: are regional lymph nodes the first stop for metastases (“incubator” hypothesis) or does their involvement serve as an indicator of aggressive disease with inherent metastatic potential (“marker” hypothesis). Is there a better way to improve prediction of disease outcome? This article attempts to address some of the resultant questions that were the subject of the session “Novel Frontiers in the Diagnosis of Cancer” at the 8th International Congress on Cancer Metastases, held in San Francisco, CA in October 2019. Some of these questions addressed include the significance of sentinel node metastasis in melanoma, and the optimal method for their pathologic analysis. The finding of circulating tumor cells in the blood may potentially supplant surgical techniques for detection of metastatic disease, and we are beginning to perfect techniques for their detection, understand how to apply the findings clinically, and develop clinical followup treatment algorithms based on these results. Finally, we will discuss the revolutionary field of machine learning and its applications in cancer diagnosis. Computer-based learning algorithms have the potential to improve efficiency and diagnostic accuracy of pathology, and can be used to develop novel predictors of prognosis, but significant challenges remain. This review will thus encompass latest concepts in the detection of cancer metastasis via the lymphatic system, the circulatory system, and the role of computers in enhancing our knowledge in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Urteaga O, Pack GT (1966) On the antiquity of melanoma. Cancer 19(5):607–610

    CAS  PubMed  Google Scholar 

  2. Gorantla VC, Kirkwood JM (2014) State of melanoma: an historic overview of a field in transition. Hematol Oncol Clin North Am 28(3):415–435

    PubMed  PubMed Central  Google Scholar 

  3. Cooper S (1840) The first lines of the theory and practice of surgery. Longman, London

    Google Scholar 

  4. Snow HM (1892) Melanoma cancerous disease. Lancet 140:869–922

    Google Scholar 

  5. Faries MB et al (2018) Lymph node metastasis in melanoma: a debate on the significance of nodal metastases, conditional survival analysis and clinical trials. Clin Exp Metastasis 35(5–6):431–442

    PubMed  PubMed Central  Google Scholar 

  6. Cabanas RM (1977) An approach for the treatment of penile carcinoma. Cancer 39(2):456–466

    CAS  PubMed  Google Scholar 

  7. Morton DL et al (1992) Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127(4):392–399

    CAS  PubMed  Google Scholar 

  8. Fayne RA et al (2019) Evolving management of positive regional lymph nodes in melanoma: Past, present and future directions. Oncol Rev 13(2):433

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeitoun J, Babin G, Lebrun JF (2019) Sentinel node and breast cancer: a state-of-the-art in 2019. Gynecol Obstet Fertil Senol 47(6):522–526

    CAS  PubMed  Google Scholar 

  10. Leong SP, Pissas A, Scaarato M, Gallon F, Pissas MH, Amore M, Wu M, Faries M, Lund AW. The lymphatic system and sentinel lymph nodes. Clin Exp Metastasis (in press)

  11. Burghgraef TA et al (2021) In vivo sentinel lymph node identification using fluorescent tracer imaging in colon cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol 158:103149

    CAS  PubMed  Google Scholar 

  12. Vuijk FA et al (2018) Fluorescent-guided surgery for sentinel lymph node detection in gastric cancer and carcinoembryonic antigen targeted fluorescent-guided surgery in colorectal and pancreatic cancer. J Surg Oncol 118(2):315–323

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dekker J, Duncan LM (2013) Lack of standards for the detection of melanoma in sentinel lymph nodes: a survey and recommendations. Arch Pathol Lab Med 137(11):1603–1609

    PubMed  Google Scholar 

  14. Cole CM, Ferringer T (2014) Histopathologic evaluation of the sentinel lymph node for malignant melanoma: the unstandardized process. Am J Dermatopathol 36(1):80–87

    PubMed  Google Scholar 

  15. Cook MG et al (2019) An updated European Organisation for Research and Treatment of Cancer (EORTC) protocol for pathological evaluation of sentinel lymph nodes for melanoma. Eur J Cancer 114:1–7

    PubMed  Google Scholar 

  16. Alkhatib W et al (2008) Utility of frozen-section analysis of sentinel lymph node biopsy specimens for melanoma in surgical decision making. Am J Surg 196(6):827–832; discussion 832–833

    PubMed  PubMed Central  Google Scholar 

  17. Gipponi M et al (2005) The prognostic role of the sentinel lymph node in clinically node-negative patients with cutaneous melanoma: experience of the Genoa group. Eur J Surg Oncol 31(10):1191–1197

    CAS  PubMed  Google Scholar 

  18. Scolyer RA et al (2005) Intraoperative frozen-section evaluation can reduce accuracy of pathologic assessment of sentinel nodes in melanoma patients. J Am Coll Surg 201(5):821–823; author reply 823–824

    PubMed  Google Scholar 

  19. Badgwell BD et al (2011) Intraoperative sentinel lymph node analysis in melanoma. J Surg Oncol 103(1):1–5

    PubMed  Google Scholar 

  20. Scolyer RA et al (2020) Melanoma pathology reporting and staging. Mod Pathol 33(Suppl 1):15–24

    PubMed  Google Scholar 

  21. Eggermont AMM et al (2018) Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med 378(19):1789–1801

    CAS  PubMed  Google Scholar 

  22. Hauschild A et al (2018) Longer follow-up confirms relapse-free survival benefit with adjuvant dabrafenib plus trametinib in patients with resected BRAF V600-mutant stage III melanoma. J Clin Oncol 36(35):3441–3449

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Faries MB et al (2017) Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med 376(23):2211–2222

    PubMed  PubMed Central  Google Scholar 

  24. Mahar AL et al (2016) Critical assessment of clinical prognostic tools in melanoma. Ann Surg Oncol 23(9):2753–2761

    PubMed  Google Scholar 

  25. Kattan MW et al (2016) American Joint Committee on Cancer acceptance criteria for inclusion of risk models for individualized prognosis in the practice of precision medicine. CA Cancer J Clin 66(5):370–374

    PubMed  PubMed Central  Google Scholar 

  26. Huang RR et al (2000) Selective modulation of paracortical dendritic cells and T-lymphocytes in breast cancer sentinel lymph nodes. Breast J 6(4):225–232

    PubMed  Google Scholar 

  27. Cochran AJ et al (2001) Sentinel lymph nodes show profound downregulation of antigen-presenting cells of the paracortex: implications for tumor biology and treatment. Mod Pathol 14(6):604–608

    CAS  PubMed  Google Scholar 

  28. Kohrt HE et al (2005) Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med 2(9):e284

    PubMed  PubMed Central  Google Scholar 

  29. Botella-Estrada R et al (2005) Cytokine expression and dendritic cell density in melanoma sentinel nodes. Melanoma Res 15(2):99–106

    CAS  PubMed  Google Scholar 

  30. Ishigami S et al (2003) Infiltration of antitumor immunocytes into the sentinel node in gastric cancer. J Gastrointest Surg 7(6):735–739

    PubMed  Google Scholar 

  31. Mohos A et al (2013) Immune cell profile of sentinel lymph nodes in patients with malignant melanoma—FOXP3+ cell density in cases with positive sentinel node status is associated with unfavorable clinical outcome. J Transl Med 11:43

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pantel K, Alix-Panabières C (2019) Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat Rev Clin Oncol 16(7):409–424

    CAS  PubMed  Google Scholar 

  33. Cortés-Hernández LE, Eslami SZ, Alix-Panabières C (2020) Circulating tumor cell as the functional aspect of liquid biopsy to understand the metastatic cascade in solid cancer. Mol Aspects Med 72:100816

    PubMed  Google Scholar 

  34. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168(4):670–691

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ashworth TR (1869) A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust Med J 5:146–147

    Google Scholar 

  36. Allard WJ et al (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904

    PubMed  Google Scholar 

  37. Alix-Panabières C, Pantel K (2017) Clinical prospects of liquid biopsies. Nat Biomed Eng 1(4):0065

    Google Scholar 

  38. Pantel K, Alix-Panabières C (2010) Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 16(9):398–406

    PubMed  Google Scholar 

  39. Eslami SZ, Cortés-Hernández LE, Alix-Panabières C (2020) Epithelial cell adhesion molecule: an anchor to isolate clinically relevant circulating tumor cells. Cells 9(8):1836

    Google Scholar 

  40. Ferlay J et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953

    CAS  PubMed  Google Scholar 

  41. Cristofanilli M et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    CAS  PubMed  Google Scholar 

  42. Pantel K, Hille C, Scher HI (2019) Circulating tumor cells in prostate cancer: from discovery to clinical utility. Clin Chem 65(1):87–99

    CAS  PubMed  Google Scholar 

  43. Cohen SJ et al (2009) Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann Oncol 20(7):1223–1229

    CAS  PubMed  Google Scholar 

  44. Yang J et al (2020) Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 21(6):341–352

    PubMed  PubMed Central  Google Scholar 

  45. Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20(2):69–84

    CAS  PubMed  Google Scholar 

  46. Miller MC et al (2018) The Parsortix™ cell separation system—a versatile liquid biopsy platform. Cytometry A 93(12):1234–1239

    PubMed  PubMed Central  Google Scholar 

  47. Ozkumur E et al (2013) Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 5(179):179ra47

    PubMed  PubMed Central  Google Scholar 

  48. Yu M et al (2014) Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345(6193):216–20

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramirez JM et al (2014) Prognostic relevance of viable circulating tumor cells detected by EPISPOT in metastatic breast cancer patients. Clin Chem 60(1):214–221

    CAS  PubMed  Google Scholar 

  50. Denève E et al (2013) Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin Chem 59(9):1384–1392

    PubMed  Google Scholar 

  51. Kuske A et al (2016) Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients. Sci Rep 6:39736

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Garrel R et al (2019) Circulating tumor cells as a prognostic factor in recurrent or metastatic head and neck squamous cell carcinoma: the CIRCUTEC Prospective Study. Clin Chem 65(10):1267–1275

    CAS  PubMed  Google Scholar 

  53. Cayrefourcq L et al (2019) S100-EPISPOT: a new tool to detect viable circulating melanoma cells. Cells 8(7):755

    CAS  PubMed Central  Google Scholar 

  54. Hu Z et al (2019) Quantitative evidence for early metastatic seeding in colorectal cancer. Nat Genet 51(7):1113–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Castro J et al (2018) Screening circulating tumor cells as a noninvasive cancer test in 3388 individuals from high-risk groups (ICELLATE2). Dis Markers 2018:4653109

    PubMed  PubMed Central  Google Scholar 

  56. Pantel K et al (2012) Circulating epithelial cells in patients with benign colon diseases. Clin Chem 58(5):936–940

    CAS  PubMed  Google Scholar 

  57. Amin MB et al (2017) The eight edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin 67(2):93–99

    PubMed  Google Scholar 

  58. Lakhani S, Ellis I, Schnitt S, Tan P, van de Vijver M (2012) WHO Classification of tumors of the breast. IARC Press, Lyon

    Google Scholar 

  59. Bidard FC et al (2014) Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 15(4):406–414

    PubMed  Google Scholar 

  60. Groot Koerkamp B et al (2013) Circulating tumor cells and prognosis of patients with resectable colorectal liver metastases or widespread metastatic colorectal cancer: a meta-analysis. Ann Surg Oncol 20(7):2156–2165

    PubMed  Google Scholar 

  61. Cohen SJ et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26(19):3213–3221

    PubMed  Google Scholar 

  62. Lindsay CR et al (2019) EPAC-lung: pooled analysis of circulating tumour cells in advanced non-small cell lung cancer. Eur J Cancer 117:60–68

    CAS  PubMed  Google Scholar 

  63. de Bono JS et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14(19):6302–6309

    PubMed  Google Scholar 

  64. Helissey C et al (2015) Circulating tumor cell thresholds and survival scores in advanced metastatic breast cancer: the observational step of the CirCe01 phase III trial. Cancer Lett 360(2):213–218

    CAS  PubMed  Google Scholar 

  65. Riethdorf S et al (2018) Clinical applications of the Cell Search platform in cancer patients. Adv Drug Deliv Rev 125:102–121

    CAS  PubMed  Google Scholar 

  66. Eslami-S Z, Cortés-Hernández LE, Alix-Panabières C (2019) Circulating tumor cells: moving forward into clinical applications. Precis Cancer Med. https://doi.org/10.21037/pcm.2019.11.07

    Article  Google Scholar 

  67. Scher HI et al (2016) Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2(11):1441–1449

    PubMed  PubMed Central  Google Scholar 

  68. Alix-Panabières C (2020) The future of liquid biopsy. Nature 579(7800):S9

    PubMed  Google Scholar 

  69. Wang D et al (2016) Deep learning for identifying metastatic breast cancer. arXiv Preprint. arXiv:1606.05718

  70. Takamatsu M et al (2019) Prediction of early colorectal cancer metastasis by machine learning using digital slide images. Comput Methods Prog Biomed 178:155–161

    Google Scholar 

  71. Devunooru S et al (2020) Deep learning neural networks for medical image segmentation of brain tumours for diagnosis: a recent review and taxonomy. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-020-01998-w

    Article  Google Scholar 

  72. Jiao W et al (2020) A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nat Commun 11(1):728

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu Z, Li X, Zhou B (2020) Barriers and solutions in clinical implementation of pharmacogenomics for personalized medicine. In: Cai W et al (eds) Pharmacogenomics in precision medicine: from a perspective of ethnic differences. Springer Singapore, Singapore, pp 277–289

    Google Scholar 

  74. Ahn SJ et al (2020) Contrast-enhanced T1-weighted image radiomics of brain metastases may predict EGFR mutation status in primary lung cancer. Sci Rep 10(1):8905

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fu Y et al (2020) Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat Cancer 187:2152

    Google Scholar 

  76. Zhang Y et al (2020) Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue. Light Sci Appl 9:78

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Paredes AZ et al (2020) A novel machine-learning approach to predict recurrence after resection of colorectal liver metastases. Ann Surg Oncol. https://doi.org/10.1245/s10434-020-08991-9

    Article  PubMed  Google Scholar 

  78. Manz CR et al (2020) Validation of a machine learning algorithm to predict 180-day mortality for outpatients with cancer. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.4331

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bur AM et al (2019) Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma. Oral Oncol 92:20–25

    PubMed  Google Scholar 

  80. Schmauch B et al (2020) A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat Commun 11(1):3877

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kraus OZ, Ba JL, Frey BJ (2016) Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics. https://doi.org/10.1093/bioinformatics/btw252

    Article  PubMed  PubMed Central  Google Scholar 

  82. McCarthy J, Hayes PJ (1969) Some philosophical problems from the standpoint of artificial intelligence. Readings in artificial intelligence. Elsevier, Amsterdam, pp 431–450

    Google Scholar 

  83. Yu KH, Kohane IS (2019) Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf 28(3):238–241

    PubMed  Google Scholar 

  84. Hofer IS et al (2020) Realistically integrating machine learning into clinical practice: a road map of opportunities, challenges, and a potential future. Anesth Analg 130(5):1115–1118

    PubMed  PubMed Central  Google Scholar 

  85. Beam AL, Manrai AK, Ghassemi M (2020) Challenges to the reproducibility of machine learning models in health care. JAMA 323(4):305–306

    PubMed  PubMed Central  Google Scholar 

  86. Moons KGM et al (2015) New guideline for the reporting of studies developing, validating, or updating a multivariable clinical prediction model: the TRIPOD Statement. Adv Anat Pathol 22(5):303–305

    PubMed  Google Scholar 

  87. Liu X et al (2020) Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension. BMJ 370:m3164

    PubMed  PubMed Central  Google Scholar 

  88. Char DS, Shah NH, Magnus D (2018) Implementing machine learning in health care—addressing ethical challenges. N Engl J Med 378(11):981–983

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane L. Messina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented at the 8th International Cancer Metastasis Congress in San Francisco, CA, USA from October 25 to 27, 2019 (https://www.cancermetastasis.org). To be published in an upcoming Special Issue of Clinical and Experimental Metastasis: Novel Frontiers in Cancer Metastasis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alix-Panabieres, C., Magliocco, A., Cortes-Hernandez, L.E. et al. Detection of cancer metastasis: past, present and future. Clin Exp Metastasis 39, 21–28 (2022). https://doi.org/10.1007/s10585-021-10088-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10088-w

Keywords

Navigation