Skip to main content

Advertisement

Log in

Mesothelial cells interact with tumor cells for the formation of ovarian cancer multicellular spheroids in peritoneal effusions

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Epithelial ovarian cancer (EOC) dissemination is primarily mediated by the shedding of tumor cells from the primary site into ascites where they form multicellular spheroids that rapidly lead to peritoneal carcinomatosis. While the clinical importance and fundamental role of multicellular spheroids in EOC is increasingly appreciated, the mechanisms that regulate their formation and dictate their cellular composition remain poorly characterized. To investigate these important questions, we characterized spheroids isolated from ascites of women with EOC. We found that in these spheroids, a core of mesothelial cells was encased in a shell of tumor cells. Analysis further revealed that EOC spheroids are dynamic structures of proliferating, non-proliferating and hypoxic regions. To recapitulate these in vivo findings, we developed a three-dimensional co-culture model of primary EOC and mesothelial cells. Our analysis indicated that, compared to the OVCAR3 cell line, primary EOC cells isolated from ascites as well as mesothelial cells formed compact spheroids. Analysis of heterotypic spheroid microarchitecture revealed a structure that grossly resembles the structure of spheroids isolated from ascites. Cells that formed compact spheroids had elevated expression of β1 integrin and low expression of E-cadherin. Addition of β1 integrin blocking antibody or siRNA-mediated downregulation of β1 integrin resulted in reduced tightness of the spheroids. Interestingly, the loss of MUC16 and E-cadherin expression resulted in the formation of more compact spheroids. Therefore, our findings support the heterotypic nature of spheroids from malignant EOC ascites. In addition, our data describe an unusual link between E-cadherin expression and less compact spheroids. Our data also emphasize the role of MUC16 and β1 integrin in EOC spheroid formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Partridge EE, Barnes MN (1999) Epithelial ovarian cancer: prevention, diagnosis, and treatment. CA Cancer J Clin 49:297–320

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer Statistics 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  3. Bast RC, Hennessy B, Mills GB (2009) The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9:415–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, Xu X, Hamilton TC (2004) Focus on epithelial ovarian cancer. Cancer Cell 5:19–24

    Article  CAS  PubMed  Google Scholar 

  5. Shield K, Ackland ML, Ahmed N, Rice GE (2009) Multicellular spheroids in ovarian cancer metastases: biology and pathology. Gynecol Oncol 113:143–148

    Article  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  7. Xu S, Yang Y, Dong L, Qiu W, Yang L, Wang X, Liu L (2014) Construction and characteristics of an E-cadherin-related three-dimensional suspension growth model of ovarian cancer. Sci Rep 4:5646

    CAS  PubMed  Google Scholar 

  8. Giannakouros P, Comamala M, Matte I, Rancourt C, Piché A (2015) MUC16 mucin (CA125) regulates the formation of multicellular aggregates by altering β-catenin signaling. Am J Cancer Res 5:219–230

    CAS  PubMed  Google Scholar 

  9. Sodek KL, Ringuette MJ, Brown TJ (2009) Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. Int J Cancer 124:2060–2070

    Article  CAS  PubMed  Google Scholar 

  10. Liao J, Qian F, Tchabo N, Mhawech-Fauceglia P, Beck A, Qian Z, Wang X, Huss WJ, Lele SB, Morrison CD, Odunsi K (2014) Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS One 9:e84941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong Y, Stephens C, Walpole C, Swedberg JE, Boyle GM, Parsons PG, McGuckin MA, Harris JM, Clements JA (2013) Paclitaxel resistance and multicellular spheroid formation are induced by kallikrein-related peptidase 4 in serous ovarian cancer cells in an ascites mimicking microenvironment. PLoS One 8:e57056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dong Y, Tan OL, Loessner D, Stephens C, Walpole C, Boyle GM, Parsons PG, Clements JA (2010) Kallikrein-related peptidase 7 promotes multicellular aggregation via the α5β1 integrin pathway and paclitaxel chemoresistance in serous epithelial ovarian carcinoma. Cancer Res 70:2624–2633

    Article  CAS  PubMed  Google Scholar 

  13. Makhija S, Taylor DD, Gibb RK, Gercel-Taylor C (1999) Taxol-induced bcl-2 phosphorylation in ovarian cancer monolayer and spheroids. Int J Oncol 14:515–521

    CAS  PubMed  Google Scholar 

  14. Condello S, Morgan CA, Nagdas S, Cao L, Turek J, Hurley TD, Matei D (2015) B-catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene 34:2297–2308

    Article  CAS  PubMed  Google Scholar 

  15. Kipps E, Tan DS, Kaye SB (2013) Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer 13:273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matte I, Lane D, Bachvarov D, Rancourt C, Piché A (2014) Role of malignant ascites on human mesothelial cells and their gene expression profiles. BMC Cancer 14:288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matte I, Lane D, Laplante C, Garde-Granger P, Rancourt C, Piché A (2015) Ovarian cancer ascites enhance the migration of patient-derived peritoneal mesothelial cells via cMet pathway through HGF-dependent and -independent mechanisms. Int J Cancer 137:289–298

    Article  CAS  PubMed  Google Scholar 

  18. Caicedo-Carvajal CE, Liu Q, Goy A, Pecora A, Suh KS (2012) Three-dimensional cell culture models for biomarker discoveries and cancer research. Transl Med S1:005

    Google Scholar 

  19. Lane D, Matte I, Rancourt C, Piché A (2012) Osteoprotegerin (OPG) protects ovarian cancer cells from TRAIL-induced apoptosis but does not contribute to malignant ascites-mediated attenuation of TRAIL-induced apoptosis. J Ovar Res 5:34

    Article  CAS  Google Scholar 

  20. Boivin M, Lane D, Beaudin J, Piché A, Rancourt C (2009) CA125 (MUC16) tumor antigen selectively modulates the sensitivity of ovarian cancer cells to genotoxic drug-induced apoptosis. Gynecol Oncol 115:407–413

    Article  CAS  PubMed  Google Scholar 

  21. Thériault C, Pinard M, Comamala M, Migneault M, Beaudin J, Matte I, Boivin M, Piché A, Rancourt C (2011) MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol Oncol 121:434–443

    Article  CAS  PubMed  Google Scholar 

  22. Matte I, Lane D, Boivin M, Rancourt C, Piché A (2014) MUC16 mucin (CA125) attenuates TRAIL-induced apoptosis by decreasing TRAIL R2 expression and increasing c-FLIP expression. BMC Cancer 14:234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shepherd TG, Thériault BL, Campbell EJ, Nachtigal MW (2006) Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients. Nat Protoc 1:2643–2649

    Article  CAS  PubMed  Google Scholar 

  24. Zietarska M, Maugard C, Filali-Mouhim A, Alam-Fahmy M, Tonin PN, Provencher DM, Mes-Masson AM (2007) Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC). Mol Carcinog 46:872–885

    Article  CAS  PubMed  Google Scholar 

  25. Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    Article  CAS  PubMed  Google Scholar 

  26. Comamala M, Pinard M, Thériault C, Matte I, Albert A, Boivin M, Beaudin J, Piché A, Rancourt C (2011) Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signaling in NIH:OVCAR3 ovarian carcinoma cells. Br J Cancer 104:989–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chaturvedi P, Gilkes DM, Wong CC, Luo W, Zhang H, Wei H, Takano N, Schito L, Levchenko A, Semanza GL (2013) Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Investig 123:189–205

    Article  CAS  PubMed  Google Scholar 

  28. Barbolina MV, Burkhatter RJ, Stack MS (2011) Diverse mechanisms for activation of Wnt signalling in the ovarian tumor environment. Biochem J 437:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsukada T, Fushhida S, Harada S, Yagi Y, Kinoshita J, Oyama K, Tajima H, Fujita H, Ninomiya I, Fujimura T, Ohta T (2012) The role of human peritoneal mesothelial cells in the fibrosis and progression of gastric cancer. Int J Oncol 41:476–482

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee ES, Leong AS, Kim YS, Lee JH, Kim I, Ahn GH, Kim HS, Chun YK (2006) Calretinin, CD34, and alpha smooth muscle actin in the identification of peritoneal invasive implants of serous borderline tumors of the ovary. Mod Pathol 19:364–372

    Article  CAS  PubMed  Google Scholar 

  31. Thoma GR, Zimmermann M, Agarkova I, Kelm JM, Krek W (2014) 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev 69–70:29–41

    Article  CAS  PubMed  Google Scholar 

  32. Liu H, Radisky DC, Wang F, Bissell MJ (2004) Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J Cell Biol 164:603–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vidi PA, Bisell MJ, Lelievre SA (2013) Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol 945:193–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang F, Hansen RK, Radisky D, Yoneda T, Barcellos-Hoff MH, Peterson OW (2002) Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J Natl Cancer Inst 94:1494–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dorst N, Oberringer M, Grasser U, Pohlemann T, Metzher W (2014) Analysis of cellular composition of co-culture spheroids. Ann Anat 196:303–311

    Article  PubMed  Google Scholar 

  36. Amann A, Zwierzina M, Gamerith G, Bitsche M, Huber JM, Vogel GF, Blumer M, Koeck S, Pechriggl EJ, Kelm JM, Hilbe W, Zwierzina H (2014) Development of an innovative 3D cell culture system to study tumor – stroma interactions in non-small cell lung cancer cells. PLoS One 9:e92511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ivascu A, Kubbies M (2007) Diversity of cell-mediated adhesions in breast cancer spheroids. Int J Oncol 31:1403–1413

    CAS  PubMed  Google Scholar 

  38. Foty RA, Steinberg MS (2004) Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy. Int J Dev Biol 48:397–409

    Article  CAS  PubMed  Google Scholar 

  39. Sawada K, Mitra AK, Radhabi R, Bhaskar V, Kistner EO, Tretiakova M, Jagadeeswaran S, Montag A, Becker A, Kenny HA, Peter ME, Ramakrishnan V, Yamada SD, Lengyel E (2008) Loss of E-cadherin promotes ovarian cancer metastasis via α5-integrin, which is a therapeutic target. Cancer Res 68:2329–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Veatch AL, Carson LF, Ramakrishnan S (1994) Differential expression of cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int J Cancer 58:393–399

    Article  CAS  PubMed  Google Scholar 

  41. Lin RZ, Chou LF, Chien CC, Chang HY (2006) Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and β1-integrin. Cell Tissue Res 324:411–422

    Article  CAS  PubMed  Google Scholar 

  42. Rafehi S, Ramos YR, Bertrand M, McGee J, Préfontaine M, Sugimoto A, DiMattia GE, Shepherd TG (2016) TFGβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocr Relat Cancer 23:147–159

    Article  PubMed  Google Scholar 

  43. Sodek KL, Murphy KJ, Brown TJ, Ringuette MJ (2012) Cell-cell and cell-matrix dynamics in intraperitoneal cancer metastasis. Cancer Metastasis Rev 31:397–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Allen HJ, Porter C, Gamarra M, Piver MS, Johnson EA (1987) Isolation and morphologic characterization of human ovarian carcinoma cell clusters present in effusions. Exp Cell Biol 55:194–208

    CAS  PubMed  Google Scholar 

  45. Pomo JM, Taylor RM, Gullapalli RR (2016) Influence of TP53 and CDH1 genes in hepatocellular cancer spheroid formation and culture: a model system to understand cancer cell growth mechanics. Cancer Cell Int 16:44

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bernaudo S, Salem M, Qi X, Zhou W, Zhang C, Yang W, Rosman D, Deng Z, Ye G, Yang B, Vanderhyden B, Wu Z, Peng C (2016) Cyclin G2 inhibits epithelial-to-mesenchymal transition by disrupting Wnt/β-catenin signaling. Oncogene. doi:10.1038/onc.2016.15

    Google Scholar 

  47. Ridgway RA, Serrels B, Mason S, Kinnaird A, Muir M, Patel H, Muller WJ, Sansom OJ, Brunton VG (2012) Focal adhesion kinase is required for β-catenin-induced mobilization of epidermal stem cells. Carcinogenesis 33:2369–2376

    Article  CAS  PubMed  Google Scholar 

  48. Muniyan S, Haridas D, Chugh S, Rachagani S, Lakshmanan I, Gupta S, Seshacharyulu P, Smith LM, Ponnusamy MP, Batra SK (2016) Genes Cancer 7:110–124

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by an internal Grant from the Université de Sherbrooke, by the Centre d’excellence en Inflammation-Cancer de l’Université de Sherbrooke and by the “Programme d’aide de financement interne” of the Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke. We wish to thank the Banque de tissus et de données du Réseau de Recherche en Cancer du Fond de Recherche du Québec en Santé (FRQS), affiliated to the Canadian Tumor Repository Network (CTRNet) for providing the ascites samples and primary cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Piché.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 32211 kb)

Supplementary material 2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matte, I., Legault, C.M., Garde-Granger, P. et al. Mesothelial cells interact with tumor cells for the formation of ovarian cancer multicellular spheroids in peritoneal effusions. Clin Exp Metastasis 33, 839–852 (2016). https://doi.org/10.1007/s10585-016-9821-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-016-9821-y

Keywords

Navigation