Skip to main content

Advertisement

Log in

Amplitude, duration, variability, and seasonal frequency analysis of the El Niño-Southern Oscillation

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

As the climate is rapidly changing already, it is important to understand how the El Niño-Southern Oscillation (ENSO) has changed in recent decades, and this can shed light on future ENSO characteristics. The ERA5 data were used to analyze the amplitude, duration, variability, and seasonal frequency of El Niño and La Niña, and to investigate whether there have been changes in the amplitude and duration of these events during the period 1959–2021. During this period, variability in the amplitude of El Niño events has been much higher than that of La Niña events. Rainfall anomalies in the Niño 3.4 region also show much higher variability during El Niño compared with La Niña events, while variability in the duration of El Niño events has been much lower than that of La Niña events. The highest frequency of El Niño events is in boreal autumn and winter, while their lowest frequency is in boreal spring and summer. The frequency of La Niña events also varies seasonally, with the highest frequency in boreal autumn, but the lowest frequency in the late boreal spring to mid-summer. Both El Niño and La Niña reach the peak amplitude toward the end of the calendar year, while their minimum amplitudes occur in boreal spring. Significant positive and negative sea surface temperature (SST) trends are identified in the western and eastern tropical South Pacific, respectively, implying the strengthening of the zonal SST gradient in the tropical Pacific during the period 1959–2021. Despite that, the amplitude and duration of El Niño and La Niña events have not changed significantly over the past six decades, implying that these ENSO characteristics have not been largely influenced by a climate change signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are available at the ECMWF data server: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form.

References

  • Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  • Alizadeh O, Qadimi M, Zolghadrshojaee M, Irannejad P (2022) Frequency of different types of El Niño events under global warming. Int J Climatol. In press. https://doi.org/10.1002/joc.7858

  • Alizadeh-Choobari O (2017) Contrasting global teleconnection features of the eastern Pacific and central Pacific El Niño events. Dyn Atmos Oceans 80:139–154

    Article  Google Scholar 

  • An SI, Jin FF (2004) Nonlinearity and asymmetry of ENSO. J Clim 17:2399–2412

    Article  Google Scholar 

  • Beobide-Arsuaga G, Bayr T, Reintges A, Latif M (2021) Uncertainty of ENSO-amplitude projections in CMIP5 and CMIP6 models. Clim Dyn 56:3875–3888

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Brown JR, Brierley CM, An SI, Guarino MV, Stevenson S, Williams CJR, Zhang Q, Zhao A, Abe-Ouchi A, Braconnot P, Brady EC, Chandan D, D’Agostino R, Guo C, Legrande AN, Lohmann G, Morozova PA, Ohgaito R, O’ishi R, Otto-Bliesner BL, Peltier WR, Shi X, Sime L, Volodin EM, Zhang Z, Zheng W (2020) Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Clim Past 16:1777–1805

    Article  Google Scholar 

  • Brown PT, Caldeira K (2017) Greater future global warming inferred from Earth’s recent energy budget. Nature 552:45–50

    Article  Google Scholar 

  • Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin FF (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116

    Article  Google Scholar 

  • Cai W, Wu L, Lengaigne M, Li T, McGregor S, Kug JS, Yu JY, Stuecker MF, Santoso A, Li X, Ham YG, Chikamoto Y, Ng B, McPhaden MJ, Du Y, Dommenget D, Jia F, Kajtar JB, Keenlyside N, Lin X, Luo JJ, Martín-Rey M, Ruprich-Robert Y, Wang G, Xie SP, Yang Y, Kang SM, Choi JY, Gan B, Kim GI, Kim CE, Kim S, Kim JH, Chang P (2019) Pantropical climate interactions. Science 363:eaav4236

    Article  Google Scholar 

  • Cai W, Santoso A, Collins M, Dewitte B, Karamperidou C, Kug JS, Lengaigne M, McPhaden MJ, Stuecker MF, Taschetto AS, Timmermann A, Wu L, Yeh SW, Wang G, Ng B, Jia F, Yang Y, Ying J, Zheng XT, Brown BayrJRTobias, Capotondi A, Cobb KM, Gan B, Geng T, Ham YG, Jin FF, Jo HS, Li X, Lin X, McGregor S, Park JH, Stein K, Yang K, Zhang L, Zhong W (2021) Changing El Niño-Southern Oscillation in a warming climate. Nat Rev Earth Environ 2:628–644

    Article  Google Scholar 

  • Callahan CW, Chen C, Rugenstein M, Bloch-Johnson J, Yang S, Moyer EJ (2021) Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat Clim Change 11:752–757

    Article  Google Scholar 

  • Cane MA (2005) The evolution of El Niño, past and future. Earth Planet Sci Lett 230:227–240

    Article  Google Scholar 

  • Cane MA, Clement AC, Kaplan A, Kushnir Y, Pozdnyakov D, Seager R, Zebiak SE, Murtugudde R (1997) Twentieth-century sea surface temperature trends. Science 275:957–960

    Article  Google Scholar 

  • Chemke R, Polvani LM (2019) Opposite tropical circulation trends in climate models and in reanalyses. Nat Geosci 12:528–532

    Article  Google Scholar 

  • Chen HC, Jin FF (2020) Fundamental behavior of ENSO phase locking. J Clim 33:1953–1968

    Article  Google Scholar 

  • Chung ES, Timmermann A, Soden BJ, Ha KJ, Shi L, John VO (2019) Reconciling opposing Walker circulation trends in observations and model projections. Nat Clim Change 9:405–412

    Article  Google Scholar 

  • Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196

    Article  Google Scholar 

  • England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Sen Gupta A, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227

    Article  Google Scholar 

  • Falster G, Konecky B, Madhavan M, Stevenson S, Coats S (2021) Imprint of the Pacific Walker circulation in global precipitation δ18O. J Clim 34:8579–8597

    Article  Google Scholar 

  • Garreaud RD (2018) A plausible atmospheric trigger for the 2017 coastal El Niño. Int J Climatol 38:e1296-31,302

    Article  Google Scholar 

  • Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Ni no/Southern Oscillation events. Nat Geosci 6:112–116

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049

    Article  Google Scholar 

  • Latif M, Keenlyside NS, Schellnhuber HJ (2009) El Niño/Southern Oscillation response to global warming. Proc Natl Acad Sci USA 106:20,578-20,583

    Article  Google Scholar 

  • Lee SK, Lopez H, Chung ES, DiNezio P, Yeh SW, Wittenberg AT (2018) On the fragile relationship between El Niño and California rainfall. Geophys Res Lett 45:907–915

    Article  Google Scholar 

  • Lian T, Chen D, Ying J, Huang P, Tang Y (2018) Tropical Pacific trends under global warming: El Niño-like or La Niña-like? National Sci Rev 5:810–812

    Article  Google Scholar 

  • Lopez H, Lee SK, Kim D, Wittenberg AT, Yeh SW (2022) Projections of faster onset and slower decay of El Niño in the 21st century. Nat Commun 13:1915

    Article  Google Scholar 

  • Luo JJ, Wang G, Dommenget D (2018) May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña-like cooling? Clim Dyn 50:1335–1351

    Article  Google Scholar 

  • Marjani S, Alizadeh-Choobari O, Irannejad P (2019) Frequency of extreme El Niño and La Niña events under global warming. Clim Dyn 53:5799–5813

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in Earth science. Science 314:1740–1745

    Article  Google Scholar 

  • Misra V, Marx L, Brunke M, Zeng X (2008) The equatorial Pacific cold tongue bias in a coupled climate model. J Clim 21:5852–5869

    Article  Google Scholar 

  • Neelin JD, Jin HH, Fand Syu F (2000) Variations in ENSO phase locking. J Clim 13:2570–2590

    Article  Google Scholar 

  • Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23:5826–5843

    Article  Google Scholar 

  • Olonscheck D, Rugenstein M, Marotzke J (2020) Broad consistency between observed and simulated trends in sea surface temperature patterns. Geophys Res Lett 47:e2019GL08,677

    Article  Google Scholar 

  • Qadimi M, Alizadeh O, Irannejad P (2021) Impacts of the El Niño-Southern Oscillation on the strength and duration of the Indian summer monsoon. Meteorol Atmos Phys 133:553–564

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Richardson MT (2022) Prospects for detecting accelerated global warming. Geophys Res Lett 49:e2021GL095,782

    Article  Google Scholar 

  • Seager R, Cane M, Henderson N, Lee DE, Abernathey R, Zhang H (2019) Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat Clim Change 9:517–522

    Article  Google Scholar 

  • Shaman J, Tziperman E (2016) The superposition of eastward and westward Rossby waves in response to localized forcing. J Clim 29:7547–7557

    Article  Google Scholar 

  • Tang T, Luo JJ, Peng K, Qi L, Tang S (2021) Over-projected Pacific warming and extreme El Niño frequency due to CMIP5 common biases. Natl Sci Rev 8:nwab056

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340

    Article  Google Scholar 

  • Vecchi GA, Wittenberg AT (2010) El Niño and our future climate: where do we stand? WIREs Clim Change 1:260–270

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76

    Article  Google Scholar 

  • Wang B, Luo X, Yang YM, Sun W, Cane MA, Cai W, Yeh SW, Liu J (2019) Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc Natl Acad Sci USA 116:22,512-22,517

    Article  Google Scholar 

  • Ward PJ, Jongman B, Kummu MS, Dettinger MD, Sperna Weiland FC, Winsemius HC (2014) Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc Natl Acad Sci USA 111:15,659-15,664

    Article  Google Scholar 

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:L12,702

    Article  Google Scholar 

  • Xu K, Wang W, Liu B, Zhu C (2019) Weakening of the El Niño amplitude since the late 1990s and its link to decadal change in the North Pacific climate. Int J Clim 39:4125–4138

    Article  Google Scholar 

  • Ying J, Collins M, Cai W, Timmermann A, Huang P, Chen D, Stein K (2022) Emergence of climate change in the tropical Pacific. Nat Clim Change 12:356–364

    Article  Google Scholar 

  • Zhang W, Li J, Zhao X (2010) Sea surface temperature cooling mode in the Pacific cold tongue. J Geophys Res: Oceans 115:C12,042

    Google Scholar 

  • Zheng XT, Xie SP, Lv LH, Zhou ZQ (2016) Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. J Clim 29:7265–7279

    Article  Google Scholar 

  • Zou Y, Xi X (2021) An ongoing cooling in the eastern Pacific linked to eastward migrations of the Southeast Pacific Subtropical Anticyclone. Environ Res Lett 16:34,020

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank two anonymous reviewers for their detailed and helpful comments.

Funding

This work has been financially supported by Iran National Science Foundation (INSF) under grant number 99029635.

Author information

Authors and Affiliations

Authors

Contributions

Omid Alizadeh is the sole author of this article.

Corresponding author

Correspondence to Omid Alizadeh.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, O. Amplitude, duration, variability, and seasonal frequency analysis of the El Niño-Southern Oscillation. Climatic Change 174, 20 (2022). https://doi.org/10.1007/s10584-022-03440-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-022-03440-w

Keywords

Navigation