Skip to main content

Advertisement

Log in

Emission factors from enteric fermentation of different categories of cattle in the Mexican tropics: a comparison between 2006 and 2019 IPCC

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Considerable interest has been shown in evaluating methodologies to calculate current enteric methane emissions and using those that produce the most precise results. The objectives of this study were (1) to calculate the emission factors (EFs) for enteric methane produced by different livestock systems in the Mexican tropics using the Tier-2 methodology of the 2006 IPCC and 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2019 IPCC); (2) to calculate the Tier-2 EFs using both IPCC versions with the methane conversion factor (Ym) estimated with emission data specific to the Mexican tropics (denoted as Tier-2MX), and (3) to compare the EFs from (2) and (1) based on the Ym specific to the Mexican tropics and the default Ym for the 2006 and 2019 IPCC, respectively. To calculate the EFs and Ym using the Tier-2 methodology, three models of meat production in the tropics were selected: a monoculture system (MC, 6 farms), an intensive silvopastoral system (ISP, 6 farms), and a native silvopastoral system (NSP, 6 farms). Twelve of the selected farms were dual-purpose (meat and milk production), and 6 were used for calf production. The EFs were estimated using two main steps: (1) classification of livestock into subcategories: bulls, lactating cows, dry cows, and replacement heifers; and (2) calculation of the gross energy (MJ day−1) intake as prescribed in Chapter 10, Volume 4 of the IPCC (2006 and 2019). The data showed that high and low productivity could be distinguished using the 2019 IPCC but not the 2006 IPCC. Higher average EFs were generated by Tier-1 than by Tier-2. The Tier-2 EFs were higher than the Tier-2MX EFs. These results confirm that Tier-2 methodologies can enhance existing differences. Additionally, the Tier-2MX EFs for each type of cattle were lower than the Tier-2 and Tier-1 EFs. These results show that it is advisable to use methane yields determined for a particular country or region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Materials availability

Not applicable.

Code availability

Not applicable.

References

  • Barahona R (2014) Contribución de la Leucaena leucocephala Lam (de Wit) a la oferta y digestibilidad de nutrientes y las emisiones de metano entérico en bovinos pastoreando en sistemas silvopastoril ... Carta FEDEGAN, 140(February), 66–69

  • Benaouda M, González-Ronquillo M, Appuhamy JADRN, Kebreab E, Molina LT, Herrera-Camacho J, … Castelán-Ortega OA (2020) Development of mathematical models to predict enteric methane emission by cattle in Latin America. Livestock Sci 241(March):104177. https://doi.org/10.1016/j.livsci.2020.104177

  • Calvo E, Sabin G, Limmeechokchai B, Pipatti R, Rojas Y, Sturgiss R, … Wirth T (2019) 2019 Refinement to the 200 IPCC Guidelines for National Greenhouse Gas Inventories. Overview. Fundam Appl Climatol 2:1–15. https://doi.org/10.21513/0207-2564-2019-2-05-13

  • Castelán-Ortega OA, Ku-Vera JC, Estrada-Flores JG (2014) Modeling methane emissions and methane inventories for cattle production systems in Mexico. Atmósfera 27(2):185–191. https://doi.org/10.1016/S0187-6236(14)71109-9

    Article  Google Scholar 

  • Caro D, Kebreab E, Mitloehner FM (2016) Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. Clim Change 137:467–480. https://doi.org/10.1007/s10584-016-1686-1

    Article  Google Scholar 

  • Chará J, Reyes E, Peri P, Otte J, Arce E, Schneider F (2019) Silvopastoral systems and their contribution to improved resource use and sustainable development goals: evidence from Latin America. Cali. Retrieved from http://www.cipav.org.co/pdf/SPS_Report_ISBN_FAO.pdf

  • Charmley E, Williams SRO, Anderson A, Hegarty RS, Staunton KM, Moate PJ,… Hannah MC (2016) A universal equation to predict methane production of forage-fed cattle in Australia. Animal Production Science 56(3):169–180. https://doi.org/10.1071/an15365

  • Escobar-Bahamondes P, Oba M, Beauchemin KA (2017) Universally applicable methane prediction equations for beef cattle fed high- or low-forage diets. Can J Anim Sci 97(1):83–94. https://doi.org/10.1139/cjas-2016-0042

    Article  Google Scholar 

  • Eugène M, Sauvant D, Nozière P, Viallard D, Oueslati K, Lherm M, … Doreau M (2019) A new Tier 3 method to calculate methane emission inventory for ruminants. J Environ Manage 231:982–988. https://doi.org/10.1016/j.jenvman.2018.10.086

  • FAO (2018) FAOSTAT. Retrieved March 11, 2021, from http://www.fao.org/faostat/es/#home

  • FAO and New Zealand Agricultural Greenhouse Gas Research Centre (2017) Low emissions development of the beef cattle sector in Uruguay - reducing enteric methane for food security and livelihoods. Rome

  • FAOSTAT (2017) FAOSTAT. Retrieved September 12, 2018, from http://www.fao.org/faostat/en/#home

  • Gay C, Clemente R (2015) Reporte mexicano de cambio climático. Grupo III Impactos, vulnerabilidad y adaptación. Universidad Nacional Autónoma de México

  • González-Quintero R, Bolívar-Vergara DM, Chirinda N, Arango J, Pantevez H, Barahona-Rosales R, Sánchez-Pinzón MS (2021) Environmental impact of primary beef production chain in Colombia: carbon footprint, non-renewable energy and land use using Life Cycle Assessment. Sci Total Environ 773:145573. https://doi.org/10.1016/j.scitotenv.2021.145573

    Article  Google Scholar 

  • González-Quintero R, Sánchez-Pinzón MS, Bolívar-Vergara DM, Chirinda N, Arango J, Pantévez HA, … Barahona-Rosales R (2020) Technical and environmental characterization of Colombian beef cattle-fattening farms, with a focus on farm size and ways of improving production. Outlook on Agriculture 49(2):153–162. https://doi.org/10.1177/0030727019884336

  • Greenhouse Gas Protocol (2007) Global warming potential values (Vol. 2014). Retrieved from www.ipcc.ch

  • Hammond KJ, Crompton LA, Bannink A, Dijkstra J, Yáñez-Ruiz DR, O’Kiely P, … Reynolds CK (2016) Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim Feed Sci Technol 219:13–30. https://doi.org/10.1016/j.anifeedsci.2016.05.018

  • Harrison MT, McSweeney C, Tomkins NW, Eckard RJ (2015) Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agric Syst 136:138–146. https://doi.org/10.1016/j.agsy.2015.03.003

    Article  Google Scholar 

  • Hook SE, Wright ADG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010:50–60. https://doi.org/10.1155/2010/945785

    Article  Google Scholar 

  • Hristov AN, Kebreab E, Niu M, Oh J, Bannink A, Bayat AR, … Yu Z (2018) Symposium review: uncertainties in enteric methane inventories, measurement techniques, and prediction models. J Dairy Sci 101(7):6655–6674. https://doi.org/10.3168/jds.2017-13536

  • IPCC (2006) Chapter 10. Emissions from livestock and manure management. Retrieved from https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf

  • IPCC (2019) Chapter 10 Emissions from livestock and manure management. Retrieved from http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html

  • Juárez J, Díaz P, Rodríguez J, Martínez C, Hernández B, Ramírez E, … Herman E (2016) Caracterización de la leche y clasificación de calidad mediante análisis Cluster en sistemas de doble propósito. Revista Mexicana De Ciencias Pecuarias 7(4):525–537

  • Ku-Vera JC, Valencia-Salazar SS, Piñeiro-Vázquez AT, Molina-Botero IC, Arroyave-Jaramillo J, Montoya-Flores MD, … Solorio-Sánchez FJ (2018) Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiration chambers. Agric for Meteorol 258(1–2):3–7. https://doi.org/10.1016/j.agrformet.2018.01.008

  • Lassey KR (2007) Livestock methane emission: from the individual grazing animal through national inventories to the global methane cycle. Agric for Meteorol 142(2–4):120–132. https://doi.org/10.1016/j.agrformet.2006.03.028

    Article  Google Scholar 

  • Liu Z, Liu Y, Shi X, Wang J, Murphy JP, Maghirang R (2017) Enteric methane conversion factor for dairy and beef cattle: effects of feed digestibility and intake level. Transact ASABE 60(2):459–464. https://doi.org/10.13031/trans.11744

  • Mach KJ, Mastrandrea MD, Freeman PT, Field CB (2017) Unleashing expert judgment in assessment. Glob Environ Chang 44:1–14. https://doi.org/10.1016/j.gloenvcha.2017.02.005

    Article  Google Scholar 

  • Myhre G, Shindell D (2011) Chapter 8 : Anthropogenic and Natural Radiative Forcing. In First Order Draf. IPCC WGI Fifth Assessment Report (pp. 1–119)

  • Nemecek T, Jungbluth N, Milà Canals L, Schenck R (2016) Environmental impacts of food consumption and nutrition: where are we and what is next? Int J Life Cycle Assess 21:607–620. https://doi.org/10.1007/s11367-016-1071-3

    Article  Google Scholar 

  • Ominski KH, Boadi DA, Wittenberg KM, Fulawka DL, Basarab JA (2011) Estimates of enteric methane emissions from cattle in Canada using the IPCC Tier-2 methodology. Can J Anim Sci 87(3):459–467. https://doi.org/10.4141/cjas06034

    Article  Google Scholar 

  • Parra AS, Mora-Delgado J (2017) Emission factors estimated from enteric methane of dairy cattle in Andean zone using the IPCC Tier-2 methodology. Agrofor Syst 93:783–791. https://doi.org/10.1007/s10457-017-0177-3

    Article  Google Scholar 

  • Picasso VD, Modernel PD, Becoña G, Salvo L, Gutiérrez L, Astigarraga L (2014) Sustainability of meat production beyond carbon footprint: a synthesis of case studies from grazing systems in Uruguay. Meat Sci 98(3):346–354. https://doi.org/10.1016/j.meatsci.2014.07.005

    Article  Google Scholar 

  • Piñeiro-Vázquez AT, Canul-Solis JR, Jiménez-Ferrer GO, Alayón-Gamboa JA, Chay-Canul AJ, Ayala-Burgos AJ, … Ku-Vera JC (2018) Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage. Asian Australas J Anim Sci 31(11):1738–1746. https://doi.org/10.5713/ajas.17.0192

  • Ricci P, Rooke JA, Nevison I, Waterhouse A (2013) Methane emissions from beef and dairy cattle: quantifying the effect of physiological stage and diet characteristics. J Anim Sci 91(11):5379–5389. https://doi.org/10.2527/jas.2013-6544

    Article  Google Scholar 

  • SEMARNAP (1997) México Primera Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. México, D.F. Retrieved from http://marefateadyan.nashriyat.ir/node/150

  • SEMARNAT (2001) México 2a. Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. México, D.F. Retrieved from http://www.cambioclimatico.gob.mx/images/stories/PDF/segconal.pdf

  • SEMARNAT (2006) México Tercera Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. México Tercera Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. México, D.F.

  • SEMARNAT (2009) México Cuarta Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. México, D.F.

  • SEMARNAT (2012) México Quinta Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. México, D.F

  • SEMARNAT (2018a) Inventario Nacional de emisiones de gases y compuestos de efecto invernadero 1990–2015 INEGYCEI. Ciudad de México

  • SEMARNAT (2018b) México Sexta Comunicación Nacional y Segundo Informe Bienal de Actualización ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. Retrieved from http://marefateadyan.nashriyat.ir/node/150

  • SIAP (2020) Producción Ganadera. Servicio de Información Agroalimentaria y Pesquera, México. Retrieved April 10, 2021, from https://www.gob.mx/siap/acciones-y-programas/produccion-pecuaria

  • Thornton PK, Herrero M (2010) Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc Natl Acad Sci USA 107(46):19667–19672. https://doi.org/10.1073/pnas.0912890107

    Article  Google Scholar 

  • Vercoe JE (1970) The fasting metabolism of Brahman, Africander and Hereford×Shorthorn cattle. Br J Nutr 24(3):599–606. https://doi.org/10.1079/bjn19700061

    Article  Google Scholar 

Download references

Funding

This project was funded by the Program of Support for Research and Technological Innovation Projects of the Universidad Nacional Autonoma de Mexico (the PAPIIT IV200715 Project). The first author received a doctoral scholarship in the Postgraduate in Sustainability Sciences, Universidad Nacional Autonoma de Mexico from the National Council of Science and Technology (CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonor Patricia Güereca.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors consent to the publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Huerta, A., de la Salud Rubio Lozano, M., Ku-Vera, J.C. et al. Emission factors from enteric fermentation of different categories of cattle in the Mexican tropics: a comparison between 2006 and 2019 IPCC. Climatic Change 172, 23 (2022). https://doi.org/10.1007/s10584-022-03378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-022-03378-z

Keywords

Navigation