Skip to main content

Advertisement

Log in

Natural hazards in Australia: storms, wind and hail

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Current and potential future storm-related wind and hail hazard in Australia is reviewed. Confidence in the current incidence of wind hazard depends upon the type of storm producing the hazard. Current hail hazard is poorly quantified in most regions of Australia. Future projections of wind hazard indicate decreases in wind hazard in northern Australia, increases along the east coast and decreases in the south, although such projections are considerably uncertain and are more uncertain for small-scale storms than for larger storms. A number of research gaps are identified and recommendations made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexander LV, Power S (2009) Severe storms inferred from 150 years of sub-daily pressure observations along Victoria's “Shipwreck Coast”. Austr Meteorol Oceanogr J 58:129–133

    Google Scholar 

  • Allen JT, Allen ER (2016) A review of severe thunderstorms in Australia. Atmos Res 178–179: 347–366

  • Allen JT, Karoly DJ (2014) A climatology of Australian severe thunderstorm environments 1979–2011: interannual variability and ENSO influence. Int J Climatol 34:81–97

    Article  Google Scholar 

  • Allen JT, Karoly DJ, Mills GA (2011) A severe thunderstorm climatology for Australia and associated thunderstorm environments. Aust Meteorol Oceanogr J 61:143–158

    Google Scholar 

  • Allen JT, Karoly DJ, Walsh KJ (2014) Future Australian severe thunderstorm environments, Part II: the influence of a strongly warming climate on convective environments. J Clim 27:3848–3868

    Article  Google Scholar 

  • Allen JT, Tippett MK, Sobel AH (2015) An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J Adv Model Earth Sys 7:226–243

    Article  Google Scholar 

  • Amburn SA, Wolf PL (1997) VIL Density as a hail indicator. Weather Forecast 12:473–478

    Article  Google Scholar 

  • Bedka KM (2011) Overshooting cloud top detections using MSG SEVIRI infrared brightness temperature and their relationship to severe weather over Europe. Atmos Res 99:175–189

    Article  Google Scholar 

  • Braganza K, Hennessy K, Alexander L, Trewin B (2013) Changes in extreme weather. In: Christoff P (ed) Four degrees of global warming: Australia in a hot world. Routledge, Abingdon, pp 33–60

  • Brooks HE (2013) Severe thunderstorms and climate change. Atmos Res 123:129–138

    Article  Google Scholar 

  • Brooks HE, Lee JW, Craven JP (2003) The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos Res 67:73–94

    Article  Google Scholar 

  • Browning SA, Goodwin ID (2013) Large-scale influences on the evolution of winter subtropical maritime cyclones affecting Australia’s east coast. Mon Weather Rev 141:2416–2431

    Article  Google Scholar 

  • Bureau of Transport Economics (2001) Economic costs of natural disasters in Australia. Report no. 103, 170 pp

  • Callaghan J, Power SB (2011) Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Clim Dyn 37:647–662

    Article  Google Scholar 

  • Chang EK, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res Atmos 117 (D23)

  • Christensen JH et al. (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF et al. (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (IPCC AR5). Cambridge University Press, Cambridge, pp. 1217–1308

    Google Scholar 

  • Cintineo JL, Smith TM, Lakshmanan V, Brooks HE, Ortega KL (2012) An objective high-resolution hail climatology of the contiguous United States. Weather Forecast 27:1235–1248

    Article  Google Scholar 

  • Coles S, Bawa J, Trenner L, Dorazio P (2001) An introduction to statistical modeling of extreme values, vol 208. Springer, London

    Book  Google Scholar 

  • Di Luca A, Evans JP, Pepler A, et al. (2015) Resolution sensitivity of cyclone climatology over eastern Australia using six reanalysis products. J Climate 28:9530–9549

  • Doswell CA III, Brooks HE, Kay MP (2005) Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Weather Forecast 20:577–595

    Article  Google Scholar 

  • Dowdy AJ (2014) Long-term changes in Australian tropical cyclone numbers. Atmos Sci Lett 15:292–298. doi:10.1002/asl2.502

    Google Scholar 

  • Dowdy AJ, Kuleshov Y (2014) Climatology of lightning activity in Australia: spatial and seasonal variability. Aust Meteorol Oceanogr J 6:9–14

    Google Scholar 

  • Dowdy AJ, Mills GA, Timbal B, et al. (2013a) Understanding rainfall projections in relation to extratropical cyclones in eastern Australia. Aust Meteorol Oceanogr J 63:355–364

    Google Scholar 

  • Dowdy AJ, Mills GA, Timbal B (2013b) Large-scale diagnostics of extratropical cyclogenesis in eastern Australia. Int J Climatol 33:2318–2327. doi:10.1002/joc.3599

    Article  Google Scholar 

  • Dowdy AJ, Mills GA, Timbal B, Wang Y (2013c) Changes in the risk of extratropical cyclones in eastern Australia. J Clim 26:1403–1417. doi: 10.1175/JCLI-D-12-00192. 1

  • Elmore KL, Flamig ZL, Lakshmanan V, Kaney BT, Farmer V, Reeves HD, Rothfusz LP (2014) MPING: Crowd-sourcing weather reports for research. Bull Amer Meteorol Soc 95:1335–1342

  • Evans JP, Ji F, Lee C, et al. (2014) Design of a regional climate modelling projection ensemble experiment – NARCliM. Geosci Model Dev 7:621–629. doi:10.5194/gmd-7-621-2014

    Article  Google Scholar 

  • Fyfe JC (2003) Extratropical southern hemisphere cyclones: harbingers of climate change? J Clim 16:2802–2805

    Article  Google Scholar 

  • Grieger J, Leckebusch G, Donat M, Schuster M, Ulbrich U (2014) Southern Hemisphere winter cyclone activity under recent and future climate conditions in multi-model AOGCM simulations. Int J Climatol 34:3400–3416

    Article  Google Scholar 

  • Hanstrum BN, Mills GA, Watson A, Monteverdi JP, Doswell CA III (2002) The cool-season tornadoes of California and southern Australia. Weather Forecast 17:705–722

    Article  Google Scholar 

  • Harper BA (1999) Numerical modelling of extreme tropical cyclone winds. J Wind Eng Ind Aerodyn 83:35–47

    Article  Google Scholar 

  • Heinselman PL, Ryzhkov AV (2006) Validation of polarimetric hail detection. Weather Forecast 21:839–850

    Article  Google Scholar 

  • Hemer MA, McInnes KL, Ranasinghe R (2011) Climate and variability bias adjustment of climate model-derived winds for a southeast Australian dynamical wave model. Ocean Dyn 62:87–104. doi:10.1007/s10236-011-0486-4

    Article  Google Scholar 

  • Hemer MA, McInnes KL, Ranasinghe R (2013) Projections of climate change-driven variations in the offshore wave climate off south eastern Australia. Int J Climatol 33:1615–1632. doi:10.1002/joc.3537

    Article  Google Scholar 

  • Hermida L, Sánchez JL, López L, Berthet C, Dessens J, García-Ortega E, Merino A (2013) Climatic trends in hail precipitation in France: spatial, altitudinal, and temporal variability. Sci World J. doi:10.1155/2013/494971

    Google Scholar 

  • Heymsfield AJ, Giammanco IM, Wright R (2014) Terminal velocities and kinetic energies of natural hailstones. Geophys Res Lett 41:8666–8672

    Article  Google Scholar 

  • Holland GJ, Bruyere C (2014) Recent intense hurricane response to global climate change. Clim Dyn 42:617–627. doi:10.1007/s00382-013-1713-0.

    Article  Google Scholar 

  • Holland G, Lynch A, Leslie L (1987) Australian east-coast cyclones.1. Synoptic overview and case-study. Mon Weather Rev 115:3024–3036

    Article  Google Scholar 

  • Holmes, JD (2008 and 2011) Impact of climate change on design wind speeds in cyclonic regions. JDH Consulting and Australian Building Codes Board, June 2008 and June 2011 (revised edition)

  • Holmes JD, Ginger JD (2012) The gust wind speed duration in AS/NZS 1170.2. Aust J Struct Eng 13:207–217

    Article  Google Scholar 

  • Hope PK, Drosdowsky W, Nicholls N (2006) Shifts in the synoptic systems influencing southwest Western Australia. Clim Dyn 26:751–764

    Article  Google Scholar 

  • Hopkins LC, Holland G (1997) Australian Heavy-rain days and associated east coast cyclones: 1958–92. J Climatol 10:621–635. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Jakob D (2010) Challenges in developing a high-quality surface wind-speed data-set for Australia. Aust Meteorol Oceanogr J 60:227–236

    Google Scholar 

  • Ji F, Evans JP, Argueso D, et al. (2015) Using large-scale diagnostic quantities to investigate change in East Coast Lows. Clim Dyn 45:2443–2453. doi:10.1007/s00382-015-2481-9

    Article  Google Scholar 

  • JMA (2014) New geostationary meteorological satellites – Himawari-8/9. Available online at http://www.jma.go.jp/jma/kishou/books/himawari/2014_Himawari89.pdf

  • Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim 28:7203–7224

    Article  Google Scholar 

  • Kossin JP, Emanuel KA, Vecchi GA (2014) The poleward migration of the location of tropical cyclone maximum intensity. Nature 509:349–352

    Article  Google Scholar 

  • Kuleshov Y, de Hoedt G, Wright W, Brewster A (2002) Thunderstorm distribution and frequency in Australia. Aust Meteorol Mag 51:145–154

    Google Scholar 

  • Kunkel KE, Karl TR, Brooks H, Kossin J, Lawrimore JH, Arndt D, Wuebbles D (2013) Monitoring and understanding trends in extreme storms: State of knowledge. Bull Am Meteorol Soc 94:499–514

    Article  Google Scholar 

  • Lim E-P, Simmonds I (2009) Effect of tropospheric temperature change on the zonal mean circulation and SH winter extratropical cyclones. Clim Dyn 33:19–32

    Article  Google Scholar 

  • McInnes KL, Leslie LM, McBride JL (1992) Numerical simulation of cut-off lows on the Australian east coast: sensitivity to sea-surface temperature. Int J Climatol 12:783–795

    Article  Google Scholar 

  • McInnes KL, Walsh KJE, Hubbert GD, Beer T (2003) Impact of sea-level rise and storm surges on a coastal community. Nat Hazards 30:187–207

    Article  Google Scholar 

  • McInnes KL, Erwin TA, Bathols JM (2011) Global Climate Model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos Sci Lett 12:325–333. doi:10.1002/asl.341.

    Article  Google Scholar 

  • McVicar TR, Van Niel TG, Li LT, Roderick ML, Rayner DP, Ricciardulli L, Donohue R (2008). Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys Res Letters, 35

  • Miller CA, Holmes JD, Henderson DJ, Ginger JD, Morrison M (2013) The response of the Dines anemometer to gusts and comparisons with cup anemometers. J Atmos Ocean Technol 30:1320–1336

    Article  Google Scholar 

  • Mills GA, Webb R, Davidson NE, Kepert J, Seed A, Abbs D (2010) The Pasha Bulker east coast low of 8 June 2007. Centre for Australian Weather and Climate Research Tech Rep 23:62

    Google Scholar 

  • Ortega KL, Smith TM, Manross KL, Scharfenberg KA, Witt A, Kolodziej AC, Gourley JJ (2009). The severe hazards analysis and verification experiment. Bull Amer Meteorol Soc  90:1519–1530

  • Oliver SE, Moriarty WW, Holmes JD (2000) A risk model for design of transmission line systems against thunderstorm downburst winds. Eng Struct 22:1173–1179

    Article  Google Scholar 

  • Palutikof JP, Brabson BB, Lister DH, Adcock ST (1999) A review of methods to calculate extreme wind speeds. Meteorol Appl 6:119–132

    Article  Google Scholar 

  • Pepler A, Coutts-Smith A (2013) A new, objective, database of East Coast Lows. Aust Meteorol Oceanogr J 63:461–472

    Google Scholar 

  • Pepler AS, Di Luca A, Ji F, et al. (2014) Impact of identification method on the inferred characteristics and variability of Australian East Coast Lows. Mon Weather Rev 143:864–877. doi:10.1175/MWR-D-14-00188.1

    Article  Google Scholar 

  • Ramsay HA, Camargo SJ, Kim D (2012) Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Clim Dyn 39:897–917

    Article  Google Scholar 

  • Rasmussen EN, Straka JM, Davies-Jones R, Doswell CA III, Carr FH, Eilts MD, MacGorman DR (1994) Verification of the origins of rotation in tornadoes experiment: VORTEX. Bull Am Meteorol Soc 75:995–1006

    Article  Google Scholar 

  • Reinecke PA, Durran DR (2009) Initial-condition sensitivities and the predictability of downslope winds. J Atmos Sci 66:3401–3341

    Article  Google Scholar 

  • Richter H (2007) A cool-season low-topped supercell tornado event near Sydney, Australia. Preprints, 33rd Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc. and Australian Bureau of Meteorology Research Center., P13A.16. [Available online at https://ams.confex.com/ams/pdfpapers/123550.pdf.]

  • Sanders F, Gyakum J (1980) Synoptic-dynamic climatology of the bomb. Mon Weather Rev 108:1589–1606

    Article  Google Scholar 

  • Schultz CJ, Petersen WA, Carey LD (2009) Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J Appl Meteorol Climatol 48:2543–2563

    Article  Google Scholar 

  • Schultz CJ, Petersen WA, Carey LD (2011) Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Weather Forecast 26:744–755

    Article  Google Scholar 

  • Schuster SS, Blong RJ, McAneney KJ (2005) Relationship between radar-derived hail kinetic energy and damage to insured buildings for severe hailstorms in Eastern Australia. Atmos Res 81:215–235

    Article  Google Scholar 

  • Schuster SS, Blong RJ, Speer MS (2006) A hail climatology of the Greater Sydney area and New South Wales, Australia. Int J Climatol 25:1633–1650

    Article  Google Scholar 

  • Sinclair MR (2002) Extratropical transition of southwest Pacific tropical cyclones. Part I: climatology and mean structure changes. Mon Weather Rev 130:590–609

    Article  Google Scholar 

  • Soderholm J, McGowan H, Richter H, Walsh K, Weckwerth T, Coleman M (2016) The Coastal Convective Interactions Experiment (CCIE): Understanding the role of sea breezes in climatological hailstorm hotspots in Eastern Australia. Bull Amer Meteorol Soc (in press)

  • Speer M, Wiles P, Pepler A (2009) Low pressure systems off the New South Wales coast and associated hazardous weather: establishment of a database. Aust Meteorol Oceanogr J 58:29–39

    Google Scholar 

  • Standards Australia (2011) Structural design actions. Part 2: Wind actions, Australian/New Zealand Standard, AS/NZS 1170.2:2011, Standards Australia, Sydney, NSW

  • Strachan J, Vidale PL, Hodges K, Roberts M, Demory M-E (2013) Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J Clim 26:133–152. doi:10.1175/JCLI-D-12-00012.1.

    Article  Google Scholar 

  • Troccoli A, Muller K, Coppin P, Davy R, Russell C, Hirsch AL (2012) Long-term wind speed trends over Australia. J Clim 25:170–183

    Article  Google Scholar 

  • Walsh KJE, Camargo SJ, Vecchi GA, et al. (2015) Hurricanes and climate: the U.S. CLIVAR working group on hurricanes. Bull Am Meteorol Soc 96:997–1017

    Article  Google Scholar 

  • Wang CH, Wang X, Khoo YB (2013) Extreme wind gust hazard in Australia and its sensitivity to climate change. Nat Hazards 67: 549–567

  • Witt A, Eilts MD, Stumpf GJ, Johnson JT, Mitchell ED, Thomas KW (1998) An enhanced hail detection algorithm for the WSR-88D. Weather Forecast 13:386–303

    Google Scholar 

  • Wurman W, Dowell D, Richardson Y, Markowski P, Rasmussen E, Burgess D, Wicker L, Bluestein HB (2012) The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull Am Meteorol Soc 93:1147–1170

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their respective institutions for supporting this work. J.P. Evans is supported by funding from the NSW Office of Environment and Heritage funded NSW/ACT Regional Climate Modelling (NARCliM) Project and the Australian Research Council as part of the Future Fellowship FT110100576.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Walsh.

Additional information

This article is part of a Special Issue on “The effect of historical and future climate changes on natural hazards in Australia” edited by Seth Westra, Chris White and Anthony Kiem.

Electronic supplementary material

ESM 1

(DOCX 1.04 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, K., White, C.J., McInnes, K. et al. Natural hazards in Australia: storms, wind and hail. Climatic Change 139, 55–67 (2016). https://doi.org/10.1007/s10584-016-1737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1737-7

Keywords

Navigation