Skip to main content

Advertisement

Log in

Integrating parameter uncertainty of a process-based model in assessments of climate change effects on forest productivity

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The parameter uncertainty of process-based models has received little attention in climate change impact studies. This paper aims to integrate parameter uncertainty into simulations of climate change impacts on forest net primary productivity (NPP). We used either prior (uncalibrated) or posterior (calibrated using Bayesian calibration) parameter variations to express parameter uncertainty, and we assessed the effect of parameter uncertainty on projections of the process-based model 4C in Scots pine (Pinus sylvestris) stands under climate change. We compared the uncertainty induced by differences between climate models with the uncertainty induced by parameter variability and climate models together. The results show that the uncertainty of simulated changes in NPP induced by climate model and parameter uncertainty is substantially higher than the uncertainty of NPP changes induced by climate model uncertainty alone. That said, the direction of NPP change is mostly consistent between the simulations using the standard parameter setting of 4C and the majority of the simulations including parameter uncertainty. Climate change impact studies that do not consider parameter uncertainty may therefore be appropriate for projecting the direction of change, but not for quantifying the exact degree of change, especially if parameter combinations are selected that are particularly climate sensitive. We conclude that if a key objective in climate change impact research is to quantify uncertainty, parameter uncertainty as a major factor driving the degree of uncertainty of projections should be included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berninger F, Nikinmaa E (1997) Implications of varying pipe model relationships on scots pine growth in different climates. Funct Ecol 11(2):146–156. doi:10.1046/j.1365-2435.1997.00067.x

    Article  Google Scholar 

  • Berninger F et al. (2005) Effects of tree size and position on pipe model ratios in scots pine. Can J For Res 35:1294–1304

    Article  Google Scholar 

  • Bugmann H et al. (1997) A new forest gap model to study the effects of environmental change on forest structure and functioning. In: Mohren GMJ, Kramer K, Sabate S (eds) Impacts of Global Change of Tree Physiology and Forest Ecosystem. Proceedings of the International Conference on Impacts of Global Change on Tree Physiology and Forest Ecosystems, held 26–29 November 1996, Wageningen. Forestry Science. Kluwer Academic Publisher, Dordrecht, pp 255–261

  • Espinosa-Bancalari MA, Perry DA, Marshall JD (1987) Leaf area-sapwood area relationships in adjacent young Douglas-fir stands with different early growth rates. Can J For Res 17(2):174–180. doi:10.1139/x87-030

    Article  Google Scholar 

  • Flechsig M, Böhm U, Nocke T, Rachimow C (2013) The multi-run simulation environment SimEnv: User Guide for Version 3.1. Potsdam Institute for Climate Impact Research, Potsdam, Germany

  • Fontes L et al. (2010) Models supporting forest management in a changing environment. For Sys 19(SI):8–29

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, et al. (eds) Cambridge University press. United Kingdom and New York, NY, USA, Cambridge, p. 996

    Google Scholar 

  • Kattge J et al. (2011) TRY – a global database of plant traits. Glob Chang Biol 17(9):2905–2935

    Article  Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  Google Scholar 

  • Lasch P et al. (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For Eco Manage 207(1–2):59–74

    Article  Google Scholar 

  • Lautenschläger M, Keuler K, Wunram C, Keup-Thiel E, Schubert M, Will A, Rockel B, Boehm U (2009a) Climate simulation with CLM, climate of the 20th century run no.1, data stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_C20_1_D3

  • Lindner M et al. (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83. doi:10.1016/j.jenvman.2014.07.030

    Article  Google Scholar 

  • Long JN, Smith FW (1988) Leaf area - sapwood area relations of lodgepole pine as influenced by stand density and site index. Can J For Res 18(2):247–250. doi:10.1139/x88-036

    Article  Google Scholar 

  • Mäkelä A (1986) Implications of the pipe model theory on dry matter partitioning and height growth in trees. J Theor Biol 123:103–120

    Article  Google Scholar 

  • Mäkelä A et al. (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20(5–6):289–298. doi:10.1093/treephys/20.5-6.289

    Article  Google Scholar 

  • Mäkelä A et al. (2012) Using stand-scale forest models for estimating indicators of sustainable forest management. For Ecol Manag 285:164–178

    Article  Google Scholar 

  • Medlyn BE, Duursma RA, Zeppel MJB (2011) Forest productivity under climate change: a checklist for evaluating model studies. Wiley Interdiscip Rev Clim Chang 2(3):332–355. doi:10.1002/wcc.108

    Article  Google Scholar 

  • Mencuccini M, Grace J (1995) Climate influences the leaf area/sapwood area ratio in scots pine. Tree Physiol 15(1):1–10. doi:10.1093/treephys/15.1.1

    Article  Google Scholar 

  • Nakicenovic N et al. (2000) IPCC special report emission scenarios. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Pothier D, Margolis A (1991) Analysis of growth and light interception of balsam fir and white birch saplings following precommercial thinning. Ann For Sci 48(2):123–132

    Article  Google Scholar 

  • Reyer C (2015) Projections of changes in forest productivity and carbon pools under environmental change – a review of stand scale modeling studies. Current Forestry Reports 1:53–68. doi:10.1007/s40725-015-0009-5

    Article  Google Scholar 

  • Reyer C, Lasch P, Mohren GMJ, Sterck FJ (2010) Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change—a model-based analysis. Ann For Sci 67:805

    Article  Google Scholar 

  • Reyer C et al. (2014) Projecting regional changes in forest net primary productivity in Europe driven by climate change and carbon dioxide concentration. Ann For Sci 71:211–225. doi:10.1007/s13595-013-0306-8

    Article  Google Scholar 

  • Reyer C et al. (2015) Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J Ecol 103:5–15. doi:10.1111/1365-2745.12337

    Article  Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form - the pipe model theory I. Basic analysis. Jap J Ecol 14(3):97–105

    Google Scholar 

  • Sitch S et al. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9(2):161–185

    Article  Google Scholar 

  • van der Linden P, Mitchell J (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, UK

    Google Scholar 

  • Van Oijen M, Rougier J, Smith R (2005) Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiol 25(7):915–927

    Article  Google Scholar 

  • van Oijen M et al. (2013) Bayesian calibration, comparison and averaging of six forest models, using data from scots pine stands across Europe. For Ecol Manag 289:255–268

    Article  Google Scholar 

  • Warszawski L et al. (2013) A multi-model analysis of risk of ecosystem shifts under climate change. Environ Res Lett 8(4):044018

    Article  Google Scholar 

  • Wramneby A, Smith B, Zaehle S, Sykes MT (2008) Parameter uncertainties in the modeling of vegetation dynamics – effects on tree community structure and ecosystem functioning in European forest biomes. Ecol Mod 216:277–290

    Article  Google Scholar 

Download references

Acknowledgments

This work would not have been possible without the data and support provided by Werner Rammer (Austria), Gaby Deckmyn (Belgium), Andres Kiviste (Estonia), Annikki Mäkelä and Sanna Härkönen (Finland). We are grateful to the support of COST Actions FP0603 and FP1304 as well as the FP7 project MOTIVE (grant agreement no. 226544). We further acknowledge the help and support of our colleagues Felicitas Suckow, Tobias Pilz, Martin Gutsch, Sebastian Ostberg and Stefan Lange.

Author contribution

CR designed research, carried out simulations, analysed data and wrote the paper. MF, MvO and PLB supervised the whole process, helped with implementation of BC algorithms and interpretation of the data and contributed to paper writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. O. Reyer.

Electronic Supplementary Material

ESM 1

(PDF 1.71 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyer, C.P.O., Flechsig, M., Lasch-Born, P. et al. Integrating parameter uncertainty of a process-based model in assessments of climate change effects on forest productivity. Climatic Change 137, 395–409 (2016). https://doi.org/10.1007/s10584-016-1694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1694-1

Keywords

Navigation