Skip to main content
Log in

Male sterile 28 encodes an ARGONAUTE family protein essential for male fertility in maize

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Male sterility is a common biological phenomenon in plants and is a useful trait for hybrid seed production. Normal tapetum development is essential for viable pollen generation. Although many genes involved in tapetum differentiation and degradation have been isolated in maize, elements that regulate tapetum development during pollen mother cell (PMC) meiosis are less studied. Here, we characterized a classical male-sterile mutant male sterile 28 (ms28) in maize. The ms28 mutant had a regular male meiosis process, while its tapetum cells showed premature vacuolation at the early meiotic prophase stage. Using map-based cloning, we cloned the Ms28 gene and confirmed its role in male fertility in maize together with two allelic mutants. Ms28 encodes the ARGONAUTE (AGO) family protein ZmAGO5c, and its transcripts primarily accumulate in premeiosis anthers, with more intense signals in PMCs. Transcriptomic analysis revealed that genes related to anther development, cell division, and reproductive structure development processes were differentially expressed between the ms28 mutant and its fertile siblings. Moreover, small RNA (sRNA) sequencing revealed that the small interfering RNA (siRNA) and microRNA (miRNA) abundances were obviously changed in ms28 meiotic anthers, which indicated that Ms28 may regulate tapetal cell development through small RNA–mediated epigenetic regulatory pathways. Taken together, our results shed more light on the functional mechanisms of the early development of the tapetum for male fertility in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AGO:

ARGONAUTE

CMS:

Cytoplasmic male sterility

DAPI:

4′,6-diamino-phenylindole

DEGs:

Differentially expressed genes

GMS:

Nuclear male sterility

miRNA:

microRNA

ms28:

Male sterile 28

phasiRNAs:

Phased secondary small interfering RNAs

PMCs:

Pollen mother cells

RISC:

RNA-induced silencing complexes

SEM:

Scanning electron microscopy

siRNA:

Small interfering RNA

sRNA:

Small RNA

TEM:

Transmission electron microscopy

References

  • An X, Dong Z, Tian Y, Xie K, Wu S, Zhu T, Zhang D, Zhou Y, Niu C, Ma B, Hou Q, Bao J, Zhang S, Li Z, Wang Y, Yan T, Sun X, Zhang Y, Li J, Wan X (2019) ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize. Mol Plant 12:343–359

  • Anders S, Pyl PT, Huber W (2015) HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

  • Belanger S, Pokhrel S, Czymmek KJ, Meyers BC (2020) Pre-meiotic, 24-nt reproductive phasiRNAs are abundant in anthers of wheat and barley but not rice and maize. Plant Physiol 2020:00816

    Google Scholar 

  • Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang H, Sun H, Luo H, Zhao L, Dong Z, Yan S, Zhao C, Liu R, Xu C, Li S, Chen H, Jin W (2017) IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol 173:307–325

    Article  CAS  PubMed  Google Scholar 

  • Cigan AM, Unger E, Xu R, Kendall T, Fox TW (2001) Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex Plant Reprod 14:135–142

    Article  CAS  Google Scholar 

  • Das S, Swetha C, Pachamuthu K, Nair A, Shivaprasad PV (2020) Loss of function of Oryza sativa Argonaute 18 induces male sterility and reduction in phased small RNAs. Plant Reprod 33:59–73

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Yan SS, Jiang L, Zhao WS, Ning K, Zhao JY, Liu XF, Zhang J, Wang Q, Zhang XL (2015) HANABA TARANU (HAN) Bridges meristem and organ primordia boundaries through PINHEAD, JAGGED, BLADE-ON-PETIOLE2 and CYTOKININ OXIDASE 3 during flower development in Arabidopsis. PLoS Genet 11:e1005479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Field S, Thompson B (2016) Analysis of the maize dicer-like1 mutant, fuzzy tassel, implicates microRNAs in anther maturation and dehiscence. PLoS One 11:e0146534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  Google Scholar 

  • Golubovskaya IN, Sitnikova DV (1980) Three meiotic mutations of maize, causing irregular segregation of chromosomes in the first division of meiosis. Genetika 16:656–666

    Google Scholar 

  • Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32

    Article  CAS  PubMed  Google Scholar 

  • Kelliher T, Walbot V (2011) Emergence and patterning of the five cell types of the Zea mays anther locule. Dev Biol 350:32–49

    Article  CAS  PubMed  Google Scholar 

  • Komiya R, Ohyanagi H, Niihama M, Watanabe T, Nakano M, Kurata N, Nonomura K (2014) Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J 78:385–397

    Article  CAS  PubMed  Google Scholar 

  • Lei X, Liu B (2019) Tapetum-dependent male meiosis progression in plants: increasing evidence emerges. Front Plant Sci 10:1667

    Article  PubMed  Google Scholar 

  • Lin HF, Spradling AC (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124:2463–2476

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Nonomura KI (2016) A wide reprogramming of histone H3 modifications during male meiosis I in rice is dependent on the Argonaute protein MEL1. J Cell Sci 129:3553–3561

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Shen Y, Qin B, Wen H, Cheng J, Mao F, Shi W, Tang D, Du G, Li Y, Wu Y, Cheng Z (2020) Oryza sativa RNA-dependent RNA polymerase 6 contributes to double-strand break formation in meiosis. Plant Cell 32(10):3273–3289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu XD, Liu JS, Ren W, Yang Q, Chai ZG, Chen RM, Wang L, Zhao J, Lang ZH, Wang HY, Fan YL, Zhao JR, Zhang CY (2018) Gene-indexed mutations in maize. Mol Plant 11:496–504

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Zhang X (2018) Actions of plant Argonautes: predictable or unpredictable? Curr Opin Plant Biol 45:59–67

    Article  CAS  PubMed  Google Scholar 

  • Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon J, Skibbe D, Timofejeva L, Wang CJ, Kelliher T, Kremling K, Walbot V, Cande WZ (2013) Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J 76:592–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan GL, Zhai J, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers BC, Walbot V (2017) MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development 144:163–172

    CAS  PubMed  Google Scholar 

  • Nelms B, Walbot V (2019) Defining the developmental program leading to meiosis in maize. Science 364:52–56

    Article  CAS  PubMed  Google Scholar 

  • Nishimura A, Ito M, Kamiya N, Sato Y, Matsuoka M (2002) OsPNH1 regulates leaf development and maintenance of the shoot apical meristem in rice. Plant J 30:189–201

    Article  CAS  PubMed  Google Scholar 

  • Nonomura K, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, Kurata N (2007) A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19:2583–2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada J-P (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11:65–80

    Article  CAS  Google Scholar 

  • Qian Y, Cheng Y, Cheng X, Jiang H, Zhu S, Cheng B (2011) Identification and characterization of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families in maize. Plant Cell Rep 30:1347–1363

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

  • Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20:2214–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–S60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Goel S, Meeley RB, Dantec C, Parrinello H, Michaud C, Leblanc O, Grimanelli D (2011) Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. Plant Cell 23:443–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Gase K, Baldwin IT, Pandey SP (2015) Molecular evolution and diversification of the Argonaute family of proteins in plants. BMC Plant Biol 15:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skibbe DS, Schnable PS (2005) Male sterility in maize. Maydica 50:367–376

    Google Scholar 

  • Somaratne Y, Tian Y, Zhang H, Wang M, Huo Y, Cao F, Zhao L, Chen H (2017) ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J 90:96–110

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Xiang X, Zhai L, Zhang D, Cao Z, Liu L, Zhang Z (2018) AGO18b negatively regulates determinacy of spikelet meristems on the tassel central spike in maize. J Integr Plant Biol 60:65–78

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Liang W, Hu J, Zhang D (2012) MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Dev Cell 22:1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Teng C, Zhang H, Hammond R, Huang K, Meyers BC, Walbot V (2020) Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat Commun 11:2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timofejeva L, Skibbe DS, Lee S, Golubovskaya I, Wang R, Harper L, Walbot V, Cande WZ (2013) Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3 (Bethesda) 3:231–249

    Article  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

  • Tsou CH, Cheng PC, Tseng CM, Yen HJ, Fu YL, You TR, Walden DB (2015) Anther development of maize (Zea mays) and longstamen rice (Oryza longistaminata) revealed by cryo-SEM, with foci on locular dehydration and pollen arrangement. Plant Reprod 28:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker MR, Okada T, Hu Y, Scholefield A, Taylor JM, Koltunow AM (2012) Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development 139:1399–1404

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358

    Article  CAS  PubMed  Google Scholar 

  • Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J (2019) Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant 12:321–342

    Article  CAS  PubMed  Google Scholar 

  • Wan X, Wu S, Li Z, An X, Tian Y (2020) Lipid metabolism: critical roles in male fertility and other aspects of reproductive development in plants. Mol Plant 13:955–983

    Article  CAS  PubMed  Google Scholar 

  • Wang CJ, Nan GL, Kelliher T, Timofejeva L, Vernoud V, Golubovskaya IN, Harper L, Egger R, Walbot V, Cande WZ (2012) Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development 139:2594–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams ME (1995) Genetic engineering for pollination control. Trends Biotechnol 13:344–349

    Article  CAS  Google Scholar 

  • Yang WC, Sundaresan V (2000) Genetics of gametophyte biogenesis in Arabidopsis. Curr Opin Plant Biol 3:53–57

    Article  CAS  PubMed  Google Scholar 

  • Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC, Jiang L, Sundaresan V, Ye D (2003) Tapetum determinant1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15:2792–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi J, Moon S, Lee YS, Zhu L, Liang W, Zhang D, Jung KH, An G (2016) Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration. Plant Physiol 170:1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH, Joshua-Tor L, Mitani S, Simard MJ, Mello CC (2006) Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127:747–757

    Article  CAS  PubMed  Google Scholar 

  • Zhai L, Sun W, Zhang K, Jia H, Liu L, Liu Z, Teng F, Zhang Z (2014) Identification and characterization of Argonaute gene family and meiosis-enriched Argonaute during sporogenesis in maize. J Integr Plant Biol 56:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Zhang H, Arikit S, Huang K, Nan GL, Walbot V, Meyers BC (2015) Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci U S A 112:3146–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Yang L (2014) Specification of tapetum and microsporocyte cells within the anther. Curr Opin Plant Biol 17:49–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xia R, Meyers BC, Walbot V (2015) Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr Opin Plant Biol 27:84–90

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Luo H, Zhao Y, Chen X, Huang Y, Yan S, Li S, Liu M, Huang W, Zhang X, Jin W (2018a) Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development. BMC Plant Biol 18:318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, Wu S, An X, Xie K, Dong Z, Zhou Y, Xu L, Fang W, Liu S, Liu S, Zhu T, Li J, Rao L, Zhao J, Wan X (2018b) Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J 16:459–471

    Article  CAS  PubMed  Google Scholar 

  • Zhang YC, Lei MQ, Zhou YF, Yang YW, Lian JP, Yu Y, Feng YZ, Zhou KR, He RR, He H, Zhang Z, Yang JH, Chen YQ (2020) Reproductive phasiRNAs regulate reprogramming of gene expression and meiotic progression in rice. Nat Commun 11:6031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Li J, Ma L, Wang H, Zhou H, Ni E, Jiang D, Liu Z, Zhuang C (2019) OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers. Proc Natl Acad Sci U S A 116:7549–7558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the Maize Genetics Cooperation Stock Center for their help in providing germplasm.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31701430 to WH and 31801375 to YZ).

Author information

Authors and Affiliations

Authors

Contributions

WJ and WH conceived and supervised the project; YL and WH designed the experiments; YL carried out most of the experiments; YH performed the bioinformatic analysis; LP participated in cytogenetic analysis; YL, WH, and WJ analyzed the data and wrote the article; YZ helped with the manuscript preparation.

Corresponding authors

Correspondence to Wei Huang or Weiwei Jin.

Additional information

Responsible Editor: Andreas Houben

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, Y., Pan, L. et al. Male sterile 28 encodes an ARGONAUTE family protein essential for male fertility in maize. Chromosome Res 29, 189–201 (2021). https://doi.org/10.1007/s10577-021-09653-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-021-09653-6

Keywords

Navigation