Skip to main content
Log in

The interplay between centrosomes and the Hippo tumor suppressor pathway

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Centrosome amplification is a common feature of both solid and hematological human malignancies. Extra centrosomes are not merely innocent bystanders in cancer cells, but rather promote tumor progression by disrupting normal cellular architecture and generating chromosome instability. Consequently, centrosome amplification correlates with advanced tumor grade and overall poor clinical prognosis. By contrast, extra centrosomes are adversely tolerated in non-transformed cells and hinder cell proliferation. This suggests that in addition to acquiring extra centrosomes, cancer cells must also adapt to overcome the deleterious consequences associated with them. Here, we review evidence that implicates core components of the Hippo tumor suppressor pathway as having key roles in both the direct and indirect regulation of centrosome number. Intriguingly, functional inactivation of the Hippo pathway, which is common across broad spectrum of human cancers, likely represents one key adaptation that enables cancer cells to tolerate extra centrosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CIN:

Chromosome instability

CDKN1A:

Cyclin-dependent kinase inhibitor 1A

LATS1, LATS2:

Large tumor suppressor kinases 1 and 2

Mats:

Mps1 binder (MOB)

Mps1:

Monopolor spindle 1

MST1, MST2:

Mammalian sterile 20-like kinases 1 and 2

NDR1/2:

N-Myc downstream regulated 1 and 2 kinases

Nek2A:

NIMA-related kinase 2A

NF2:

Neurofibromin 2

SAS6:

Spindle assembly abnormal protein 6

TAZ:

Transcriptional co-activator with PDZ-binding motif

TEAD:

Transcriptional enhancer activation domain

YAP:

Transcriptional co-activator yes-associated protein

References

  • Abe Y, Ohsugi M, Haraguchi K, Fujimoto J, Yamamoto T (2006) LATS2-Ajuba complex regulates gamma-tubulin recruitment to centrosomes and spindle organization during mitosis. FEBS Lett 580:782–788

    Article  CAS  PubMed  Google Scholar 

  • Andreassen PR, Lohez OD, Lacroix FB, Margolis RL (2001) Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 12:1315–1328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059

    Article  CAS  PubMed  Google Scholar 

  • Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR (2012) Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 23:770–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aylon Y, Michael D, Shmueli A, Yabuta N, Nojima H, Oren M (2006) A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev 20:2687–2700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aylon Y, Ofir-Rosenfeld Y, Yabuta N, Lapi E, Nojima H, Lu X, Oren M (2010) The Lats2 tumor suppressor augments p53-mediated apoptosis by promoting the nuclear proapoptotic function of ASPP1. Genes Dev 24:2420–2429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA (2005) Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J Cell Biol 171:27–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A, Raff JW (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133:1032–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bertini E, Oka T, Sudol M, Strano S, Blandino G (2009) YAP: at the crossroad between transformation and tumor suppression. Cell Cycle 8:49–57

    Article  CAS  PubMed  Google Scholar 

  • Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. Gustav Fisher Verlag, Germany

    Google Scholar 

  • Brinkley BR (2001) Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11:18–21

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Zhang N, Zheng Y, DE Wilde RF, Maitra A, Pan D (2010) The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev 24:2383–2388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17:2054–2060

    Article  CAS  PubMed  Google Scholar 

  • Chavali PL, Putz M, Gergely F (2014) Small organelle, big responsibility: the role of centrosomes in development and disease. Philos Trans R Soc Lond B Biol Sci 369(1650). doi:10.1098/rstb.2013.0468

  • Chiba S, Okuda M, Mussman JG, Fukasawa K (2000) Genomic convergence and suppression of centrosome hyperamplification in primary p53−/− cells in prolonged culture. Exp Cell Res 258:310–321

    Article  CAS  PubMed  Google Scholar 

  • Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 153:517–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cimini D, Moree B, Canman JC, Salmon ED (2003) Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells and error correction is achieved by two different mechanisms. J Cell Sci 116:4213–4225

    Article  CAS  PubMed  Google Scholar 

  • Compton DA (2011) Mechanisms of aneuploidy. Curr Opin Cell Biol 23:109–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cook D, Hoa LY, Gomez V, Gomez M, Hergovich A (2014) Constitutively active NDR1-PIF kinase functions independent of MST1 and hMOB1 signalling. Cell Signal 26:1657–1667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Assoro AB, Lingle WL, Salisbury JL (2002) Centrosome amplification and the development of cancer. Oncogene 21:6146–6153

    Article  PubMed  CAS  Google Scholar 

  • Davoli T, DE Lange T (2011) The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 27:585–610

    Article  CAS  PubMed  Google Scholar 

  • Davoli T, DE Lange T (2012) Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21:765–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, Elledge SJ (2013) Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155:948–962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120–1133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doxsey S, Mccollum D, Theurkauf W (2005) Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 21:411–434

    Article  CAS  PubMed  Google Scholar 

  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, LE Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183

    Article  CAS  PubMed  Google Scholar 

  • Faragher AJ, Fry AM (2003) Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol Biol Cell 14:2876–2889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Firat-Karalar EN, Stearns T (2014) The centriole duplication cycle. Philos Trans R Soc Lond B Biol Sci 369(1650). doi:10.1098/rstb.2013.0460

  • Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA (1998) C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 141:1563–1574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Ganem NJ, Pellman D (2007) Limiting the proliferation of polyploid cells. Cell 131:437–440

    Article  CAS  PubMed  Google Scholar 

  • Ganem NJ, Storchova Z, Pellman D (2007) Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162

    Article  CAS  PubMed  Google Scholar 

  • Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ganem NJ, Cornils H, Chiu SY, O’Rourke KP, Arnaud J, Yimlamai D, Thery M, Camargo FD, Pellman D (2014) Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158:833–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghadimi BM, Sackett DL, Difilippantonio MJ, Schrock E, Neumann T, Jauho A, Auer G, Ried T (2000) Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosom Cancer 27:183–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Godinho SA, Pellman D (2014) Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond B Biol Sci 369. doi:10.1098/rstb.2013.0467

  • Godinho SA, Picone R, Burute M, Dagher R, SU Y, Leung CT, Polyak K, Brugge JS, Thery M, Pellman D (2014) Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510:167–171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo C, Tommasi S, Liu L, Yee JK, Dammann R, Pfeifer GP (2007) RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr Biol 17:700–705

    Article  CAS  PubMed  Google Scholar 

  • Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7:1140–1146

    Article  CAS  PubMed  Google Scholar 

  • Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13:591–600

    Article  CAS  PubMed  Google Scholar 

  • Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114:457–467

    Article  CAS  PubMed  Google Scholar 

  • Hergovich A, Stegert MR, Schmitz D, Hemmings BA (2006) NDR kinases regulate essential cell processes from yeast to humans. Nat Rev Mol Cell Biol 7:253–264

    Article  CAS  PubMed  Google Scholar 

  • Hergovich A, Lamla S, Nigg EA, Hemmings BA (2007) Centrosome-associated NDR kinase regulates centrosome duplication. Mol Cell 25:625–634

    Article  CAS  PubMed  Google Scholar 

  • Hergovich A, Kohler RS, Schmitz D, Vichalkovski A, Cornils H, Hemmings BA (2009) The MST1 and hMOB1 tumor suppressors control human centrosome duplication by regulating NDR kinase phosphorylation. Curr Biol 19:1692–1702

    Article  CAS  PubMed  Google Scholar 

  • Hinchcliffe EH (2014) Centrosomes and the art of mitotic spindle maintenance. Int Rev Cell Mol Biol 313:179–217

    Article  PubMed  Google Scholar 

  • Holland AJ, Fachinetti D, Zhu Q, Bauer M, Verma IM, Nigg EA, Cleveland DW (2012) The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev 26:2684–2689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong W, Guan K-L (2012) The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol 23:785–793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackman M, Lindon C, Nigg EA, Pines J (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5:143–148

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Zhang W, Wang B, Trinko R, Jiang J (2003) The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17:2514–2519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9:534–546

    Article  CAS  PubMed  Google Scholar 

  • Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ, Halder G (2002) Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129:5719–5730

    Article  CAS  PubMed  Google Scholar 

  • Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13:190–202

    Article  CAS  PubMed  Google Scholar 

  • Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, Pellman D (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL, Li Y (2005) Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120:675–685

    Article  CAS  PubMed  Google Scholar 

  • Lambrus BG, Uetake Y, Clutario KM, Daggubati V, Snyder M, Sluder G, Holland AJ (2015) p53 protects against genome instability following centriole duplication failure. J Cell Biol 210:63–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KP, Lee JH, Kim TS, Kim TH, Park HD, Byun JS, Kim MC, Jeong WI, Calvisi DF, Kim JM, Lim DS (2010) The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci U S A 107:8248–8253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386:623–627

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li S, Mana-Capelli S, Roth Flach RJ, Danai LV, Amcheslavsky A, Nie Y, Kaneko S, Yao X, Chen X, Cotton JL, Mao J, Mccollum D, Jiang J, Czech MP, Xu L, Ip YT (2014) The conserved misshapen-warts-Yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila. Dev Cell 31:291–304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lingle WL, Barrett SL, Negron VC, D’Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci U S A 99:1978–1983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q, Wang Y, Halder G, Finegold MJ, Lee J-S, Johnson RL (2010) Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci U S A 107:1437–1442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahjoub MR, Stearns T (2012) Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr Biol 22:1628–1634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mana-Capelli S, Paramasivam M, Dutta S, Mccollum D (2014) Angiomotins link F-actin architecture to Hippo pathway signaling. Mol Biol Cell 25:1676–1685

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mardin BR, Lange C, Baxter JE, Hardy T, Scholz SR, Fry AM, Schiebel E (2010) Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat Cell Biol 12:1166–1176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P, Basto R (2013) Centrosome amplification causes microcephaly. Nat Cell Biol 15:731–740

    Article  CAS  PubMed  Google Scholar 

  • Mcpherson JP, Tamblyn L, Elia A, Migon E, Shehabeldin A, Matysiak-Zablocki E, Lemmers B, Salmena L, Hakem A, Fish J, Kassam F, Squire J, Bruneau BG, Hande MP, Hakem R (2004) Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO J 23:3677–3688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO J 21:483–492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mo J-S, Yu F-X, Gong R, Brown JH, Guan K-L (2012) Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev 26:2138–2143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morisaki T, Hirota T, Iida S, Marumoto T, Hara T, Nishiyama Y, Kawasuzi M, Hiraoka T, Mimori T, Araki N, Izawa I, Inagaki M, Saya H (2002) WARTS tumor suppressor is phosphorylated by Cdc2/cyclin B at spindle poles during mitosis. FEBS Lett 529:319–324

    Article  CAS  PubMed  Google Scholar 

  • Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2:815–825

    Article  CAS  PubMed  Google Scholar 

  • Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139:663–678

    Article  CAS  PubMed  Google Scholar 

  • Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishio M, Hamada K, Kawahara K, Sasaki M, Noguchi F, Chiba S, Mizuno K, Suzuki SO, Dong Y, Tokuda M, Morikawa T, Hikasa H, Eggenschwiler J, Yabuta N, Nojima H, Nakagawa K, Hata Y, Nishina H, Mimori K, Mori M, Sasaki T, Mak TW, Nakano T, Itami S, Suzuki A (2012) Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice. J Clin Invest 122:4505–4518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Hirota T, Morisaki T, Hara T, Marumoto T, Iida S, Makino K, Yamamoto H, Hiraoka T, Kitamura N, Saya H (1999) A human homolog of Drosophila warts tumor suppressor, h-warts, localized to mitotic apparatus and specifically phosphorylated during mitosis. FEBS Lett 459:159–165

    Article  CAS  PubMed  Google Scholar 

  • Oka T, Mazack V, Sudol M (2008) Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J Biol Chem 283:27534–27546

    Article  CAS  PubMed  Google Scholar 

  • Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19:491–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pantalacci S, Tapon N, Leopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5:921–927

    Article  CAS  PubMed  Google Scholar 

  • Paramasivam M, Sarkeshik A, Yates JR 3rd, Fernandes MJ, Mccollum D (2011) Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol Biol Cell 22:3725–3733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf a, Florens L, Sanderson BW, Hattem GL, LI R (2010) Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468:321–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rancati G, Pavelka N, Fleharty B, Noll A, Trimble R, Walton K, Perera A, Staehling-Hampton K, Seidel CW, LI R (2008) Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 135:879–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salmon ED, Cimini D, Cameron LA, Deluca JG (2005) Merotelic kinetochores in mammalian tissue cells. Philos Trans R Soc Lond B Biol Sci 360:553–568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sander EE, Ten Klooster JP, van Delft S, van der Kammen RA, Collard JG (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147:1009–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selmecki A, Forche A, Berman J (2006) Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313:367–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheltzer JM, Blank HM, Pfau SJ, Tange Y, George BM, Humpton TJ, Brito IL, Hiraoka Y, Niwa O, Amon A (2011) Aneuploidy drives genomic instability in yeast. Science 333:1026–1030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silkworth WT, Nardi IK, Scholl LM, Cimini D (2009) Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4:e6564

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sluder G (2005) Two-way traffic: centrosomes and the cell cycle. Nat Rev Mol Cell Biol 6:743–748

    Article  CAS  PubMed  Google Scholar 

  • Sluder G (2014) One to only two: a short history of the centrosome and its duplication. Philos Trans R Soc Lond B Biol Sci 369:20130455

    Article  PubMed Central  PubMed  Google Scholar 

  • Sluder G, Nordberg JJ (2004) The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr Opin Cell Biol 16:49–54

    Article  CAS  PubMed  Google Scholar 

  • Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L, Chen Y, Park O, Chang J, Simpson RM, Wang C-Y, Gao B, Jiang J, Yang Y (2010) Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci U S A 107:1431–1436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sotillo R, Schvartzman JM, Socci ND, Benezra R (2010) Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464:436–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • St John MA, Tao W, Fei X, Fukumoto R, Carcangiu ML, Brownstein DG, Parlow AF, Mcgrath J, Xu T (1999) Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet 21:182–186

    Article  CAS  PubMed  Google Scholar 

  • Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber D, Hariharan IK (2002) salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110:467–478

    Article  CAS  PubMed  Google Scholar 

  • Thompson SL, Compton DA (2008) Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 180:665–672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson SL, Compton DA (2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188:369–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson SL, Compton DA (2011) Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors. Proc Natl Acad Sci U S A 108:17974–17978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toji S, Yabuta N, Hosomi T, Nishihara S, Kobayashi T, Suzuki S, Tamai K, Nojima H (2004) The centrosomal protein Lats2 is a phosphorylation target of Aurora-A kinase. Genes Cells 9:383–397

    Article  CAS  PubMed  Google Scholar 

  • Tsou MF, Stearns T (2006a) Controlling centrosome number: licenses and blocks. Curr Opin Cell Biol 18:74–78

    Article  CAS  PubMed  Google Scholar 

  • Tsou MFB, Stearns T (2006b) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442:947–951

    Article  CAS  PubMed  Google Scholar 

  • Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5:914–920

    Article  CAS  PubMed  Google Scholar 

  • Wada K-I, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138:3907–3914

    Article  CAS  PubMed  Google Scholar 

  • Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A, Kroll A, Seo CP, Hsia JE, Kim SK, Mitchell JW, Mitchell BJ, Desai A, Gahman TC, Shiau AK, Oegema K (2015) Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348:1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Huang J, Dong J, Pan D (2003) hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114:445–456

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Wang W, Zhang S, Stewart RA, Yu W (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121:1053–1063

    CAS  PubMed  Google Scholar 

  • Yabuta N, Okada N, Ito A, Hosomi T, Nishihara S, Sasayama Y, Fujimori A, Okuzaki D, Zhao H, Ikawa M, Okabe M, Nojima H (2007) Lats2 is an essential mitotic regulator required for the coordination of cell division. J Biol Chem 282:19259–19271

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Adamian M, Li T (2006) Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol Biol Cell 17:1033–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D (2013) Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 154:1342–1355

    Article  CAS  PubMed  Google Scholar 

  • Yu F-X, Guan K-L (2013) The Hippo pathway: regulators and regulations. Genes Dev 27:355–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu F-X, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, Fu X-D, Mills GB, Guan K-L (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150:780–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhang C-Z, WALA J, Mermel CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW, Getz G, Meyerson M, Beroukhim R (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45:1134–1140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai Z-C, Guan K-L (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao B, Li L, Guan KL (2010a) Hippo signaling at a glance. J Cell Sci 123:4001–4006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao B, Li L, Lei Q, Guan K-L (2010b) The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 24:862–874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao B, Tumaneng K, Guan K-L (2011) The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 13:877–883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao B, Li L, Wang L, Wang C-Y, Yu J, Guan K-L (2012) Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26:54–68

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D (2015) Identification of Happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase Cascade. Dev Cell 34:642–655

  • Zhou D, Conrad C, Xia F, Park J-S, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J, Bardeesy N (2009a) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16:425–438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou D, Conrad C, Xia F, PARK JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J, Bardeesy N (2009b) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16:425–438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou D, Zhang Y, Wu H, Barry E, Yin Y, Lawrence E, Dawson D, Willis JE, Markowitz SD, Camargo FD, Avruch J (2011) Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci U S A 108:E1312–E1320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.F.B is supported by a Biomolecular Pharmacology Training Grant from the NIH/NIGMS (5T32GM008541). N.J.G is the Aram V. Chobanian Assistant Professor of Medicine in the Shamim and Ashraf Dahod Breast Cancer Research Laboratories and is supported in part by grants from the Richard and Susan Smith Family Foundation, the Searle Scholars Program, the Karin Grunebaum Cancer Research Foundation, and the NIH/NCI (K99/R00 CA154531-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil J. Ganem.

Additional information

Responsible Editors: Daniela Cimini and Giulia Guarguaglini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolgioni, A.F., Ganem, N.J. The interplay between centrosomes and the Hippo tumor suppressor pathway. Chromosome Res 24, 93–104 (2016). https://doi.org/10.1007/s10577-015-9502-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9502-8

Keywords

Navigation