Skip to main content

Advertisement

Log in

Bradykinin Receptors Play a Critical Role in the Chronic Post-ischaemia Pain Model

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Complex regional pain syndrome type-I (CRPS-I) is a chronic painful condition resulting from trauma. Bradykinin (BK) is an important inflammatory mediator required in acute and chronic pain response. The objective of this study was to evaluate the association between BK receptors (B1 and B2) and chronic post-ischaemia pain (CPIP) development in mice, a widely accepted CRPS-I model. We assessed mechanical and cold allodynia, and paw oedema in male and female Swiss mice exposed to the CPIP model. Upon induction, the animals were treated with BKR antagonists (HOE-140 and DALBK); BKR agonists (Tyr-BK and DABK); antisense oligonucleotides targeting B1 and B2 and captopril by different routes in the model (7, 14 and 21 days post-induction). Here, we demonstrated that treatment with BKR antagonists, by intraperitoneal (i.p.), intraplantar (i.pl.), and intrathecal (i.t.) routes, mitigated CPIP-induced mechanical allodynia and oedematogenic response, but not cold allodynia. On the other hand, i.pl. administration of BKR agonists exacerbated pain response. Moreover, a single treatment with captopril significantly reversed the anti-allodynic effect of BKR antagonists. In turn, the inhibition of BKRs gene expression in the spinal cord inhibited the nociceptive behaviour in the 14th post-induction. The results of the present study suggest the participation of BKRs in the development and maintenance of chronic pain associated with the CPIP model, possibly linking them to CRPS-I pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beerthuizen A, Stronks DL, Van A et al (2012) Demographic and medical parameters in the development of complex regional pain syndrome type 1 (CRPS1): prospective study on 596 patients with a fracture. Pain 153:1187–1192

    PubMed  Google Scholar 

  • Beirith A, Santos ARS, Calixto JB (2003) The role of neuropeptides and capsaicin-sensitive fibres in glutamate-induced nociception and paw oedema in mice. Brain Res 969:110–116

    CAS  PubMed  Google Scholar 

  • Belichard P, Landry M, Faye P, Bachvarov DR (2000) Inflammatory hyperalgesia induced by zymosan in the plantar tissue of the rat : effect of kinin receptor antagonists. Immunopharmacology 46:139–147

    CAS  PubMed  Google Scholar 

  • Borsook D, Sava S (2009) Pain: do ACE inhibitors exacerbate complex regional pain syndrome? Nat Rev Neurol 5:306–308

    CAS  PubMed  Google Scholar 

  • Bortalanza B, Ferreira J, Hess SC (2002) Anti-allodynic action of the tormentic acid, a triterpene isolated from plant, against neuropathic and inflammatory persistent pain in mice. Eur J Pharmacol 453(453):203–208

    CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Bruehl S (2015) Complex regional pain syndrome. Br Med J 29:1–13

    Google Scholar 

  • Bruehl S (2010) An update on the pathophysiology of complex regional pain syndrome. Anesthesiology 113:713–725

    PubMed  Google Scholar 

  • Brusco I, Benatti A, Regina C et al (2019) Kinins and their B1 and B2 receptors are involved in fi bromyalgia-like pain symptoms in mice. Biochem Pharmacol 168:119–132

    CAS  PubMed  Google Scholar 

  • Brusco I, Silva CR, Trevisan G et al (2017) Potentiation of paclitaxel-induced pain syndrome in mice by angiotensin I converting enzyme inhibition and involvement of kinins. Mol Neurobiol 54:7824–7837

    CAS  PubMed  Google Scholar 

  • Cheng J-K, Ji R-R (2008) Intracellular signaling in primary sensory neurons and persistent pain. Neurochem Res 33:1970–1978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coderre TJ, Xanthos DN, Francis L, Bennett GJ (2004) Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain 112:94–105

    PubMed  Google Scholar 

  • Corrêa CR, Calixto JB (1993) Evidence for participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in the mouse. Br J Pharmacol 110:193–198

    PubMed  Google Scholar 

  • Costa R, Bicca MA, Manjavachi MN et al (2017) Kinin receptors sensitize TRPV4 channel and induce mechanical hyperalgesia: relevance to paclitaxel-induced peripheral neuropathy in mice. Mol Neurobiol 55:1–12

    Google Scholar 

  • Costa R, Motta EM, Dutra RC et al (2011) Anti-nociceptive effect of kinin B1 and B2 receptor antagonists on peripheral neuropathy induced by paclitaxel in mice. Br J Pharmacol 164:681–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couture R, Harrisson M, Vianna RM, Cloutier F (2001) Kinin receptors in pain and inflammation. Eur J Pharmacol 429:161–176

    CAS  PubMed  Google Scholar 

  • Dal S, De PT, Tatiane C et al (2019) Nociceptive mechanisms involved in the acute and chronic phases of a complex regional pain syndrome type 1 model in mice. Eur J Pharmacol 859:172555

    Google Scholar 

  • de Mos M, de Bruijn AGJ, Huygen FJPM et al (2007) The incidence of complex regional pain syndrome: a population-based study. Pain 129:12–20

    PubMed  Google Scholar 

  • Dirckx M, Stronks DL, Wesseldijk F, Groeneweg JG (2015) Inflammation in cold complex regional pain syndrome. Acta Anesthesiol Scand Found 59:733–739

    CAS  Google Scholar 

  • Dobrivojevi M, Katarina Š (2015) Involvement of bradykinin in brain edema development after ischemic stroke. Pflugers Arch 467:201–212

    Google Scholar 

  • Dutra R (2016) Kinin receptors: key regulators of autoimmunity. Autoimmun Rev 16:192–207

    PubMed  Google Scholar 

  • Dutra RC, Bento AF, Leite DFP et al (2013) The role of kinin B1 and B2 receptors in the persistent pain induced by experimental autoimmune encephalomyelitis (EAE) in mice: evidence for the involvement of astrocytes. Neurobiol Dis 54:82–93

    CAS  PubMed  Google Scholar 

  • Ferreira J, Campos MM, Araújo R et al (2002) The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level. Neuropharmacology 43:1188–1197

    CAS  PubMed  Google Scholar 

  • Ferreira J, da Silva GL, Calixto JB (2004) Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br J Pharmacol 141:787–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flatters SJL, Bennett GJ (2004) Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109:150–161

    CAS  PubMed  Google Scholar 

  • Fox A, Wotherspoon G, McNair K et al (2003) Regulation and function of spinal and peripheral neuronal B1 bradykinin receptors in inflammatory mechanical hyperalgesia. Pain 104(683–91):6

    Google Scholar 

  • Gautam M, Prasoon P, Kumar R et al (2015) Role of neurokinin type 1 receptor in nociception at the periphery and the spinal level in the rat. Spinal Cord 54:172–182

    PubMed  Google Scholar 

  • Gewehr C, Oliveira SM, Rossato MF et al (2013) Mechanisms involved in the nociception triggered by the venom of the armed spider Phoneutria nigriventer. PLoS Negl Trop Dis 7:e2198. https://doi.org/10.1371/journal.pntd.0002198

    Article  PubMed  PubMed Central  Google Scholar 

  • Gierthmühlen J, Binder A, Baron R (2014) Mechanism-based treatment in complex regional pain syndromes. Nat Rev Neurol 10:518–528. https://doi.org/10.1038/nrneurol.2014.140

    Article  CAS  PubMed  Google Scholar 

  • Goh EL, Chidambaram S, Ma D (2017) Complex regional pain syndrome: a recent update. Burn Trauma 5:2

    Google Scholar 

  • Guthmiller K, Varacallo M (2019) Complex regional pain syndrome (CRPS), reflex sympathetic dystrophy (RSD). StatPearls Publishing, Treasure Island

    Google Scholar 

  • Hsiao H, Lin Y, Wang JC et al (2016) Hypoxia inducible factor-1 a inhibition produced anti-allodynia effect and suppressed in fl ammatory cytokine production in early stage of mouse complex regional pain syndrome model. Clin Exp Pharmacol Physiol 43:355–359

    CAS  PubMed  Google Scholar 

  • Hylden JLK, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67:313–316

    CAS  PubMed  Google Scholar 

  • Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26:696–705

    CAS  PubMed  Google Scholar 

  • Ji RR, Xu Z, Gao Y (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Publ Gr 13:533–548

    CAS  Google Scholar 

  • Kakoki M, Smithies O (2009) The kallikreinkinin system in health and in diseases of the kidney. Kidney Int 75:1019–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Kim I, Yoon M (2015) Neuroscience letters antiallodynic effect through spinal endothelin-B receptor antagonism in rat models of complex regional pain syndrome. Neurosci Lett 584:45–49

    CAS  PubMed  Google Scholar 

  • Klafke JZ, da Silva MA, Rossato MF et al (2016) Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms. Pflugers Arch Eur J Physiol 468:229–241

    CAS  Google Scholar 

  • Kohno T, Wang H, Amaya F (2008) Bradykinin enhances AMPA and NMDA receptor activity in spinal cord dorsal horn neurons by activating multiple kinases to produce pain hypersensitivity. J Neurosci 28:4533–4540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koivisto A, Jalava N, Bratty R, Pertovaara A (2018) TRPA1 antagonists for pain relief. Pharmaceuticals 11:1–19

    Google Scholar 

  • Kwak K, Han C, Lee S et al (2009) Reactive oxygen species in rats with chronic post-ischemia pain 1. Acta Anaesthesiol Scand 53:648–656

    CAS  PubMed  Google Scholar 

  • Lai J, Luo M, Chen Q et al (2006) Dynorphin A activates bradykinin receptors to maintain neuropathic pain. Nat Neurosci 9:1534–1540

    CAS  PubMed  Google Scholar 

  • Latremoliere A, Woolf C (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. Neural Plast 10:895–926

    Google Scholar 

  • Lee JW, Lee SK, Choy WS (2018) Complex regional pain syndrome type 1: diagnosis and management. J Hand Surg Asian-Pac 23:1–10

    Google Scholar 

  • Levy D, Zochodne DW (2000) Increased mRNA expression of the B1 and B2 bradykinin receptors and antinociceptive effects of their antagonists in an animal model of neuropathic pain. Pain 86:265–271

    CAS  PubMed  Google Scholar 

  • Lopes P, Couture R (1992) Cardiovascular responses elicited by intrathecal kinins in the conscious rat. Eur J Pharmacol 210:137–147

    CAS  PubMed  Google Scholar 

  • Luiz AP, Schroeder SD, Rae GA et al (2015) Contribution and interaction of kinin receptors and dynorphin A in a model of trigeminal neuropathic pain in mice. Neuroscience 300:189–200

    CAS  PubMed  Google Scholar 

  • Marceau F, Regoli D (2004) Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 3:845–852

    CAS  PubMed  Google Scholar 

  • Marinus J, Moseley L, Birklein F et al (2011) Syndrome—current state of the art. Lancet Neurol 10:637–648

    PubMed  PubMed Central  Google Scholar 

  • Martins DF, Soldi F, Stramosk J et al (2013) High-intensity swimming exercise reduces neuropathic pain in an animal model of complex regional pain syndrome type I: evidence for a role of the adenosinergic system. Neuroscience 234:69–76

    CAS  PubMed  Google Scholar 

  • Matsuzaki S, Hayashi I, Nara Y et al (2002) Role of kinin and prostaglandin in cutaneous thermal nociception. Int Immunopharmacol 2:2005–2012

    CAS  PubMed  Google Scholar 

  • Millecamps M, Laferrière A, Ragavendran JV, Laura S (2015) Role of peripheral endothelin receptors in an animal model of complex regional pain syndrome type 1 (CRPS-I). Pain 151:174–183

    Google Scholar 

  • Minville V, Mouledous L, Jaafar A et al (2019) Tibial post fracture pain is reduced in kinin receptors deficient mice and blunted by kinin receptor antagonists. J Transl Med 17:1–12

    CAS  Google Scholar 

  • De MM, Huygen FJPM, Stricker BHC et al (2009) The association between ACE inhibitors and the complex regional pain syndrome: suggestions for a neuro-inflammatory pathogenesis of CRPS. Pain 142:218–224

    Google Scholar 

  • Munnikes RJM, Muis C, Boersma M et al (2005) Intermediate stage complex regional pain syndrome type 1 is unrelated to proinflammatory cytokines. Med Inflamm 6:366–372

    Google Scholar 

  • Ohnishi M, Yukawa R, Akagi M et al (2019) Bradykinin and interleukin-1 β synergistically increase the expression of cyclooxygenase-2 through the RNA-binding protein HuR in rat dorsal root ganglion cells. Neurosci Lett 694:215–219

    CAS  PubMed  Google Scholar 

  • Parkitny L, McAuley JH, Di Pietro F et al (2013) Inflammation in complex regional pain syndrome: a systematic review and meta-analysis. Neurology 80:106–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petcu M, Dias JP, Ongali B et al (2008) Role of kinin B 1 and B 2 receptors in a rat model of neuropathic pain. Int Immunopharmacol 8:188–196

    CAS  PubMed  Google Scholar 

  • Qadri F, Bader M (2017) Kinin B1 receptors as a therapeutic target for inflammation. Expert Opin Ther Targets 22:31–44

    PubMed  Google Scholar 

  • Quintão N, Rocha L, Silva G et al (2019) The kinin B1 and B2 receptors and TNFR1/p55 axis on neuropathic pain in the mouse brachial plexus. Inflammopharmacology 27:573–586

    PubMed  Google Scholar 

  • Quintão NLM, Passos GF, Medeiros R et al (2008) Neuropathic pain-like behavior after brachial plexus avulsion in mice: the relevance of kinin B1 and B2 receptors. J Neurosci 28:2856–2863

    PubMed  PubMed Central  Google Scholar 

  • Reimer M, Rempe T, Diedrichs C et al (2016) Sensitization of the nociceptive system in complex regional pain syndrome. PLoS ONE 11:1–25

    Google Scholar 

  • Rupniak N, Boyce S, Webb J et al (1997) Effects of the bradykinin B1 receptor antagonist des-Arg9[Leu8]bradykinin and genetic disruption of the B2 receptor on nociception in rats and mice. Pain 71:89–97

    CAS  PubMed  Google Scholar 

  • Sabsovich I, Guo T, Wei T et al (2008) TNF signaling contributes to the development of nociceptive sensitization in a tibia fracture model of complex regional pain syndrome type I. Pain 137:507–519

    CAS  PubMed  Google Scholar 

  • Sandroni P, Benrud-larson LM, Mcclelland RL, Low PA (2003) Complex regional pain syndrome type I: incidence and prevalence in Olmsted county, a population-based study. Pain 103:199–207

    PubMed  Google Scholar 

  • Schinkel C, Scherens A, Koller M et al (2009) Systemic inflammatory mediators in post-traumatic complex regional pain syndrome (CRPS I)—longitudinal investigations and differences to control groups. Eur J Med Res 14:130–135

    PubMed  PubMed Central  Google Scholar 

  • Schuelert N, Just S, Corradini L et al (2015) The bradykinin B1 receptor antagonist BI113823 reverses inflammatory hyperalgesia by desensitization of peripheral and spinal neurons. Eur J Pain (United Kingdom) 19:132–142

    CAS  Google Scholar 

  • Sharma JN, Buchanan WW (1994) Pathogenic responses of bradykinin system in chronic inflammatory rheumatoid disease. Exp Toxicol Pathol 46:421–433

    CAS  PubMed  Google Scholar 

  • Shughrue PJ, Ky B, Austin CP (2003) Localization of B1 bradykinin receptor mRNA in the primate brain and spinal cord: an in situ hybridization study. J Comp Neurol 465:372–384

    CAS  PubMed  Google Scholar 

  • Soley da BS, Morais RL, Pesquero MB et al (2016) Kinin receptors in skin wound healing. J Dermatol Sci 82:95–105

    Google Scholar 

  • Steranka L, Manning D, DeHaas C et al (1988) Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc Natl Acad Sci 85:3245–3249

    CAS  PubMed  Google Scholar 

  • Tang C, Li J, Tai W et al (2017) Sex differences in complex regional pain syndrome type-I. J Pain Res 10:1811–1819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Couture R, Hong Y (2014) Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur J Pharmacol 728:59–66

    CAS  PubMed  Google Scholar 

  • Wang H, Kohno T, Amaya F et al (2005) Bradykinin produces pain hypersensitivity by potentiating spinal cord glutamatergic synaptic transmission. J Neurosci 25:7986–7992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasner G, Schattschneider J, Binder A et al (2003) Review complex regional pain syndrome ± diagnostic, mechanisms, CNS involvement and therapy. Spinal Cord 41:61–75

    CAS  PubMed  Google Scholar 

  • Woolf CJ (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152:S2–S15. https://doi.org/10.1016/j.pain.2010.09.030

    Article  PubMed  Google Scholar 

  • Yoshino O, Kobayashi M, Andoh T et al (2018) Bradykinin system is involved in endometriosis-related pain through endothelin-1 production. Eur J Pain 22:501–510

    CAS  PubMed  Google Scholar 

  • Yu S, Ouyang A (2009) TRPA1 in bradykinin-induced mechanical hypersensitivity of vagal C fibers in guinea pig esophagus. Am J Physiol 296:G255–G265

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio a Pesquisa do Estado de Santa Catarina (FAPESC), INCT-INOVAMED Program (Grant 465430/2014-7), and Programa de Pós-Graduação em Neurociências (PGN), all from Brazil, supported this work. E.C.D.G. is a Ph.D. student in neuroscience receiving grants from FAPESC. S.M.O., J.B.C., A.R.S.S., and R.C.D are the recipient of a research productivity fellowship from the CNPq.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio a Pesquisa do Estado de Santa Catarina (FAPESC), INCT-INOVAMED Program (Grant Number 465430/2014-7), and Programa de Pós-Graduação em Neurociências (PGN).

Author information

Authors and Affiliations

Authors

Contributions

ECDG designed and performed experiments, wrote the manuscript and supervised the project. GV, TRG, RRS, IB, and SMO performed experiments and analysed data. JBC, MC and ARSS wrote the manuscript. RCD supervised the project, wrote and refined the manuscript.

Corresponding author

Correspondence to Rafael C. Dutra.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Ethics Committee of Universidade Federal de Santa Catarina (CEUA-UFSC, Protocol Number PP00956/2014).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, E.C.D., Vieira, G., Gonçalves, T.R. et al. Bradykinin Receptors Play a Critical Role in the Chronic Post-ischaemia Pain Model. Cell Mol Neurobiol 41, 63–78 (2021). https://doi.org/10.1007/s10571-020-00832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-00832-3

Keywords

Navigation