Skip to main content

Advertisement

Log in

The Changes of Brain Edema and Neurological Outcome, and the Probable Mechanisms in Diffuse Traumatic Brain Injury Induced in Rats with the History of Exercise

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Since no definitive treatment has been suggested for diffuse traumatic brain injury (TBI), and also as the effect of exercise has been proven to be beneficial in neurodegenerative diseases, the effect of endurance exercise on the complications of TBI along with its possible neuroprotective mechanism was investigated in this study. Our objective was to find out whether previous endurance exercise influences brain edema and neurological outcome in TBI. We also assessed the probable mechanism of endurance exercise effect in TBI. Rats were randomly assigned into four groups of sham, TBI, exercise + sham and exercise + TBI. Endurance exercise was carried out before TBI. Brain edema was assessed by calculating the percentage of brain water content 24 h after the surgery. Neurological outcome was evaluated by obtaining veterinary coma scale (VCS) at − 1, 1, 4 and 24 h after the surgery. Interleukin-1β (IL-1β), total antioxidant capacity (TAC), malondialdehyde (MDA), protein carbonyl and histopathological changes were evaluated 24 h after the surgery. Previous exercise prevented the increase in brain water content, MDA level, histopathological edema and apoptosis following TBI. The reduction in VCS in exercise + TBI group was lower than that of TBI group. In addition, a decrease in the level of serum IL-1β and the content of brain protein carbonyl was reported in exercise + TBI group in comparison with the TBI group. We suggest that the previous endurance exercise prevents brain edema and improves neurological outcome following diffuse TBI, probably by reducing apoptosis, inflammation and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adkins DL, Boychuk J, Remple MS, Kleim JA (2006) Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol 101(6):1776–1782

    PubMed  Google Scholar 

  • Ang E, Gomez-Pinilla F (2007) Potential therapeutic effects of exercise to the brain. Curr Med Chem 14(24):2564–2571

    CAS  PubMed  Google Scholar 

  • Ansari MA, Roberts KN, Scheff SW (2008) Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radical Biol Med 45(4):443–452

    CAS  Google Scholar 

  • Arrick DM, Yang S, Li C, Cananzi S, Mayhan WG (2014) Vigorous exercise training improves reactivity of cerebral arterioles and reduces brain injury following transient focal ischemia. Microcirculation 21(6):516–523

    CAS  PubMed  Google Scholar 

  • Battey TW, Karki M, Singhal AB et al (2014) Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke 45(12):3643–3648

    PubMed  PubMed Central  Google Scholar 

  • Bayır H, Kagan VE, Clark RS et al (2007) Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J Neurochem 101(1):168–181

    PubMed  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    CAS  PubMed  Google Scholar 

  • Bland DC, Zampieri C, Damiano DL (2011) Effectiveness of physical therapy for improving gait and balance in individuals with traumatic brain injury: a systematic review. Brain Inj 25(7–8):664–679

    PubMed  PubMed Central  Google Scholar 

  • Bouzid MA, Hammouda O, Matran R, Robin S, Fabre C (2014) Low intensity aerobic exercise and oxidative stress markers in older adults. J Aging Phys Act 22(4):536–542

    PubMed  Google Scholar 

  • Boveris A, Navarro A (2008) Brain mitochondrial dysfunction in aging. IUBMB Life 60(5):308–314

    CAS  PubMed  Google Scholar 

  • Byrnes KR, Loane DJ, Stoica BA, Zhang J, Faden AI (2012a) Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. J Neuroinflammation 9(1):43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes KR, Loane DJ, Stoica BA, Zhang J, Faden AI (2012b) Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. J Neuroinflammation 9:43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmichael ST (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol 59(5):735–742

    CAS  PubMed  Google Scholar 

  • Carvalho JF, Masuda MO, Pompeu FA (2005) Method for diagnosis and control of aerobic training in rats based on lactate threshold. Comp Biochem Physiol A 140(4):409–413

    Google Scholar 

  • Castro MRT, Ferreira APdO, Busanello GL et al (2017) Previous physical exercise alters hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe TBI in rats. J Physiol 595(17):6023–6044

    PubMed  PubMed Central  Google Scholar 

  • Cheng T, Petraglia AL, Zhang L et al (2006) Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med 12(11):1278

    CAS  PubMed  Google Scholar 

  • Cotman CW, Berchtold NC, Christie L-A (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30(9):464–472

    CAS  PubMed  Google Scholar 

  • da Silva Fiorin F, de Oliveira Ferreira AP, Ribeiro LR et al (2016) The impact of previous physical training on redox signaling after traumatic brain injury in rats: a behavioral and neurochemical approach. J Neurotrauma 33(14):1317–1330

    PubMed  Google Scholar 

  • de Castro MRT, de Oliveira Ferreira AP, Busanello GL et al (2017) Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats. J Physiol 595(17):6023–6044

    PubMed  PubMed Central  Google Scholar 

  • Di Battista AP, Rhind SG, Richards D, Churchill N, Baker AJ, Hutchison MG (2016) Correction: altered blood biomarker profiles in athletes with a history of repetitive head impacts. PLoS ONE 11(10):e0164912

    PubMed  PubMed Central  Google Scholar 

  • Ding Y, Li J, Yao W, Rafols J, Clark J, Ding Y (2006) Exercise preconditioning upregulates cerebral integrins and enhances cerebrovascular integrity in ischemic rats. Acta Neuropathol 112(1):74

    CAS  PubMed  Google Scholar 

  • Dong N, Diao Y, Ding M, Cao B, Jiang D (2017) The effects of 7-nitroindazole on serum neuron-specific enolase and astroglia-derived protein (S100β) levels after traumatic brain injury. Exp Ther Med 13(6):3183–3188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dun SL, Lyu R-M, Chen Y-H, Chang J-K, Luo JJ, Dun NJ (2013) Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience 240:155–162

    CAS  PubMed  Google Scholar 

  • Endres M, Gertz K, Lindauer U et al (2003) Mechanisms of stroke protection by physical activity. Ann Neurol 54(5):582–590

    PubMed  Google Scholar 

  • Farshbaf MJ, Ghaedi K, Megraw TL et al (2016) Does PGC1α/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative disorders? NeuroMol Med 18(1):1–15

    Google Scholar 

  • Floyd RA, Hensley K (2002) Oxidative stress in brain aging: implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23(5):795–807

    CAS  PubMed  Google Scholar 

  • Griesbach GS, Hovda DA, Gomez-Pinilla F (2009) Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res 1288:105–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griesbach GS, Tio DL, Vincelli J, McArthur DL, Taylor AN (2012) Differential effects of voluntary and forced exercise on stress responses after traumatic brain injury. J Neurotrauma 29(7):1426–1433

    PubMed  PubMed Central  Google Scholar 

  • Guo M, Cox B, Mahale S et al (2008) Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood–brain barrier dysfunction in stroke. Neuroscience 151(2):340–351

    CAS  PubMed  Google Scholar 

  • Hall ED, Detloff MR, Johnson K, Kupina NC (2004) Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. J Neurotrauma 21(1):9–20

    PubMed  Google Scholar 

  • He Z, Wang X, Wu Y et al (2014) Treadmill pre-training ameliorates brain edema in ischemic stroke via down-regulation of aquaporin-4: an MRI study in rats. PLoS ONE 9(1):e84602

    PubMed  PubMed Central  Google Scholar 

  • Hicks RR, Boggs A, Leider D et al (1998) Effects of exercise following lateral fluid percussion brain injury in rats. Restor Neurol Neurosci 12(1):41–47

    PubMed  Google Scholar 

  • Hindin SB, Zelinski EM (2012) Extended practice and aerobic exercise interventions benefit untrained cognitive outcomes in older adults: a meta-analysis. J Am Geriatr Soc 60(1):136–141

    PubMed  Google Scholar 

  • Hoene M, Weigert C (2010) The stress response of the liver to physical exercise. Exerc Immunol Rev 16:163

    PubMed  Google Scholar 

  • Itoh T, Imano M, Nishida S et al (2011) Exercise inhibits neuronal apoptosis and improves cerebral function following rat traumatic brain injury. J Neural Transm 118(9):1263–1272

    PubMed  Google Scholar 

  • Jacotte-Simancas A, Costa-Miserachs D, Coll-Andreu M, Torras-Garcia M, Borlongan CV, Portell-Cortés I (2015) Effects of voluntary physical exercise, citicoline, and combined treatment on object recognition memory, neurogenesis, and neuroprotection after traumatic brain injury in rats. J Neurotrauma 32(10):739–751

    PubMed  Google Scholar 

  • Jia L, Wang F, Gu X et al (2017) Propofol postconditioning attenuates hippocampus ischemia-reperfusion injury via modulating JAK2/STAT3 pathway in rats after autogenous orthotropic liver transplantation. Brain Res 1657:202–207

    CAS  PubMed  Google Scholar 

  • Khaksari M, Soltani Z, Shahrokhi N, Moshtaghi G, Asadikaram G (2010) The role of estrogen and progesterone, administered alone and in combination, in modulating cytokine concentration following traumatic brain injury. Can J Physiol Pharmacol 89(1):31–40

    Google Scholar 

  • Khaksari M, Rajizadeh MA, Bejeshk MA et al (2018a) Does inhibition of angiotensin function cause neuroprotection in diffuse traumatic brain injury? Iran J Basic Med Sci 21(6):615

    PubMed  PubMed Central  Google Scholar 

  • Khaksari M, Soltani Z, Shahrokhi N (2018b) Effects of female sex steroids administration on pathophysiologic mechanisms in traumatic brain injury. Trans Stroke Res 9(4):393–416

    CAS  Google Scholar 

  • Khan M, Dhammu TS, Sakakima H et al (2012) The inhibitory effect of S-nitrosoglutathione on blood–brain barrier disruption and peroxynitrite formation in a rat model of experimental stroke. J Neurochem 123(s2):86–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D-H, Ko I-G, Kim B-K et al (2010) Treadmill exercise inhibits traumatic brain injury-induced hippocampal apoptosis. Physiol Behav 101(5):660–665

    CAS  PubMed  Google Scholar 

  • Kuloglu T, Aydin S, Eren MN et al (2014) Irisin: a potentially candidate marker for myocardial infarction. Peptides 55:85–91

    CAS  PubMed  Google Scholar 

  • Leker RR, Shohami E (2002) Cerebral ischemia and trauma—different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res Rev 39(1):55–73

    PubMed  Google Scholar 

  • Li D-J, Li Y-H, Yuan H-B, Qu L-F, Wang P (2017) The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism 68:31–42

    CAS  PubMed  Google Scholar 

  • Lima FD, Oliveira MS, Furian AF et al (2009) Adaptation to oxidative challenge induced by chronic physical exercise prevents Na + , K + -ATPase activity inhibition after traumatic brain injury. Brain Res 1279:147–155

    CAS  PubMed  Google Scholar 

  • Lima FD, Stamm DN, Della-Pace ID et al (2013) Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts. PLoS ONE 8(2):e55668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Löffler D, Müller U, Scheuermann K et al (2015) Serum irisin levels are regulated by acute strenuous exercise. J Clin Endocrinol Metab 100(4):1289–1299

    PubMed  Google Scholar 

  • Marmarou A, Foda MAA-E, Wvd Brink, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats: part I: pathophysiology and biomechanics. J Neurosurg 80(2):291–300

    CAS  PubMed  Google Scholar 

  • Mota BC, Pereira L, Souza MA et al (2012) Exercise pre-conditioning reduces brain inflammation and protects against toxicity induced by traumatic brain injury: behavioral and neurochemical approach. Neurotox Res 21(2):175–184

    CAS  PubMed  Google Scholar 

  • Nishioka R, Sugimoto K, Aono H et al (2016) Treadmill exercise ameliorates ischemia-induced brain edema while suppressing Na +/H + exchanger 1 expression. Exp Neurol 277:150–161

    CAS  PubMed  Google Scholar 

  • O’Connor CA, Cernak I, Vink R (2005) Both estrogen and progesterone attenuate edema formation following diffuse traumatic brain injury in rats. Brain Res 1062(1):171–174

    PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    CAS  PubMed  Google Scholar 

  • Opii WO, Nukala VN, Sultana R et al (2007) Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. J Neurotrauma 24(5):772–789

    PubMed  Google Scholar 

  • Packer L, Cadenas E, Davies KJ (2008) Free radicals and exercise: an introduction. Free Radical Biol Med 44(2):123–125

    CAS  Google Scholar 

  • Petersen AMW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98(4):1154–1162

    CAS  PubMed  Google Scholar 

  • Piao C-S, Stoica BA, Wu J et al (2013) Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol Dis 54:252–263

    PubMed  PubMed Central  Google Scholar 

  • Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M (2013) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 18(10):1208–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramlackhansingh AF, Brooks DJ, Greenwood RJ et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70(3):374–383

    PubMed  Google Scholar 

  • Rosenberg G, Estrada E, Dencoff J (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29(10):2189–2195

    CAS  PubMed  Google Scholar 

  • Sharma R, Rosenberg A, Bennett ER, Laskowitz DT, Acheson SK (2017) A blood-based biomarker panel to risk-stratify mild traumatic brain injury. PLoS ONE 12(3):e0173798

    PubMed  PubMed Central  Google Scholar 

  • Shi M, Wang X, Yamanaka T, Ogita F, Nakatani K, Takeuchi T (2007) Effects of anaerobic exercise and aerobic exercise on biomarkers of oxidative stress. Environ Health Prev Med 12(5):202–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva LFA, Hoffmann MS, Gerbatin RdR et al (2013) Treadmill exercise protects against pentylenetetrazol-induced seizures and oxidative stress after traumatic brain injury. J Neurotrauma 30(14):1278–1287

    PubMed  PubMed Central  Google Scholar 

  • Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED (2006) Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab 26(11):1407–1418

    CAS  PubMed  Google Scholar 

  • Smith PJ, Blumenthal JA, Hoffman BM et al (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72(3):239

    PubMed  PubMed Central  Google Scholar 

  • Soltani Z, Khasksari M, Shahrokhi N, Nakhaei N, Shaibani V (2009) Effect of combined administration of estrogen and progesterone on brain edema and neurological outcome after traumatic brain injury in female rats. Iran J Endocrinol Metab 10(6):629–638

    Google Scholar 

  • Soltani Z, Khaksari M, Jafari E, Iranpour M, Shahrokhi N (2015) Is genistein neuroprotective in traumatic brain injury? Physiol Behav 152:26–31

    CAS  PubMed  Google Scholar 

  • Soltani Z, Khaksari M, Shahrokhi N et al (2016) Effect of estrogen and/or progesterone administration on traumatic brain injury-caused brain edema: the changes of aquaporin-4 and interleukin-6. J Physiol Biochem 72(1):33–44

    CAS  PubMed  Google Scholar 

  • Soustiel JF, Sviri GE (2007) Monitoring of cerebral metabolism: non-ischemic impairment of oxidative metabolism following severe traumatic brain injury. Neurol Res 29(7):654–660

    CAS  PubMed  Google Scholar 

  • Stummer W, Weber K, Tranmer B, Baethmann A, Kempski O (1994) Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke 25(9):1862–1869

    CAS  PubMed  Google Scholar 

  • Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S (2010) Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life Sci 86(1):39–44

    CAS  PubMed  Google Scholar 

  • Taupin V, Toulmond S, Serrano A, Benavides J, Zavala F (1993) Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion: influence of pre-and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. J Neuroimmunol 42(2):177–185

    CAS  PubMed  Google Scholar 

  • Taylor JM, Montgomery MH, Gregory EJ, Berman NE (2015) Exercise preconditioning improves traumatic brain injury outcomes. Brain Res 1622:414–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varma S, Janesko KL, Wisniewski SR et al (2003) F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. J Neurotrauma 20(8):781–786

    PubMed  Google Scholar 

  • Vaynman S, Gomez-Pinilla F (2005) License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabilitation Neural Repair 19(4):283–295

    PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2013) Exercise facilitates the action of dietary DHA on functional recovery after brain trauma. Neuroscience 248:655–663

    CAS  PubMed  Google Scholar 

  • Yan L-J, Traber MG, Packer L (1995) Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Anal Biochem 228(2):349–351

    CAS  PubMed  Google Scholar 

  • Yang Y, Rosenberg GA (2011) Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42(11):3323–3328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Zhang Y, Zhang J et al (2013) Early exercise protects against cerebral ischemic injury through inhibiting neuron apoptosis in cortex in rats. Int J Mol Sci 14(3):6074–6089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Sabirzhanov B, Wu J, Faden AI, Stoica BA (2014) Voluntary exercise preconditioning activates multiple anti-apoptotic mechanisms and improves neurological recovery after experimental traumatic brain injury. J Neurotrauma. https://doi.org/10.1089/neu.2014.3739

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Shiebani and Dr. Pardakhti for their help and support in this study.

Author information

Authors and Affiliations

Authors

Contributions

MK directed the project and carried out the interpretations. NS and MH carried out neurobehavioral and brain edema evaluations. GHE and MI assessed biochemical and histopathological agents. ZS directed the project, carried out the data analysis and interpretations, and prepared the manuscript.

Corresponding author

Correspondence to Zahra Soltani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

The study was executed in accordance with the guidelines for animal experimental protocols of Kerman University of Medical Sciences and the internationally accepted principles for animal use and care (EU Directive of 2010; 010/63/EU). The research protocol was approved by the ethics committee of Kerman University of Medical Sciences (No. EC/KNRC/94-420). The animals were maintained in an air-conditioned room at 22–25 °C in a 12 h light and 12 h dark cycle. Also, food and water were available to the animals during the study.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, N., Soltani, Z., Khaksari, M. et al. The Changes of Brain Edema and Neurological Outcome, and the Probable Mechanisms in Diffuse Traumatic Brain Injury Induced in Rats with the History of Exercise. Cell Mol Neurobiol 40, 555–567 (2020). https://doi.org/10.1007/s10571-019-00753-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-019-00753-w

Keywords

Navigation