Skip to main content
Log in

Oxygen–Glucose Deprivation (OGD) Modulates the Unfolded Protein Response (UPR) and Inflicts Autophagy in a PC12 Hypoxia Cell Line Model

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypoxia is the lack of sufficient oxygenation of tissue, imposing severe stress upon cells. It is a major feature of many pathological conditions such as stroke, traumatic brain injury, cerebral hemorrhage, perinatal asphyxia and can lead to cell death due to energy depletion and increased free radical generation. The present study investigates the effect of hypoxia on the unfolded protein response of the cell (UPR), utilizing a 16-h oxygen–glucose deprivation protocol (OGD) in a PC12 cell line model. Expression of glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94), key players of the UPR, was studied along with the expression of glucose-regulated protein 75 (GRP75), heat shock cognate 70 (HSC70), and glyceraldehyde 3-phosphate dehydrogenase, all with respect to the cell death mechanism(s). Cells subjected to OGD displayed upregulation of GRP78 and GRP94 and concurrent downregulation of GRP75. These findings were accompanied with minimal apoptotic cell death and induction of autophagy. The above observation warrants further investigation to elucidate whether autophagy acts as a pro-survival mechanism that upon severe and prolonged hypoxia acts as a concerted cell response leading to cell death. In our OGD model, hypoxia modulates UPR and induces autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CMA:

Chaperone-mediated autophagy

DMEM:

Dulbecco’s modified Eagle’s medium

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GRP75:

Glucose-regulated protein 75

GRP78:

Glucose-regulated protein 78

GRP94:

Glucose-regulated protein 94

HSC70:

Heat shock cognate 70

OGD:

Oxygen–glucose deprivation

PC12:

Rat pheochromocytoma cell line 12

PCR:

Polymerase chain reaction

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

UPR:

Unfolded protein response

References

  • Aoki M, Abe K, Kawagoe J, Nakamura S, Kogure K (1993) Acceleration of HSP70 and HSC70 heat shock gene expression following transient ischemia in the preconditioned gerbil hippocampus. J.Cereb.Blood Flow Metab 13(5):781–788

    Article  PubMed  CAS  Google Scholar 

  • Balduini W, Carloni S, Buonocore G (2009) Autophagy in hypoxia-ischemia induced brain injury: evidence and speculations. Autophagy 5:221–223

    Article  PubMed  CAS  Google Scholar 

  • Balduini W, Carloni S, Buonocore G (2012) Autophagy in hypoxia-ischemia induced brain injury. J Matern Fetal Neonatal Med 25(Suppl 1):30–34

    Article  PubMed  CAS  Google Scholar 

  • Bando Y, Katayama T, Kasai K, Taniguchi M, Tamatani M, Tohyama M (2003) GRP94 (94 kDa glucose-regulated protein) suppresses ischemic neuronal cell death against ischemia/reperfusion injury. Eur J Neurosci 18:829–840

    Article  PubMed  Google Scholar 

  • Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4:e423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13:363–373

    Article  PubMed  CAS  Google Scholar 

  • Burbulla LF, Fitzgerald JC, Stegen K, Westermeier J, Thost AK, Kato H, Mokranjac D, Sauerwald J, Martins LM, Woitalla D, Rapaport D, Riess O, Proikas-Cezanne T, Rasse TM, Krüger R (2014) Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1. Cell Death Dis 5(4):e1180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging–a mini-review. Gerontology 55:550–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavaliere F, D’Ambrosi N, Sancesario G, Bernardi G, Volonte C (2001) Hypoglycaemia-induced cell death: features of neuroprotection by the P2 receptor antagonist basilen blue. Neurochem Int 38:199–207

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108:2777–2793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chatzimeletiou K, Makrydimas G, Sotiriadis A, Paraskevaidis E, Nicolaides KH (2005) Aneuploidy screening in coelomic samples using fluorescence in situ hybridisation (FISH). Prenat Diagn 25:919–926

    Article  PubMed  Google Scholar 

  • Chatzimeletiou K, Sioga A, Oikonomou L, Charalampidou S, Kantartzi P, Zournatzi V, Panidis D, Goulis DG, Papadimas I, Tarlatzis BC (2011) Semen analysis by electron and fluorescence microscopy in a case of partial hydatidiform mole reveals a high incidence of abnormal morphology, diploidy, and tetraploidy. Fertil Steril 95:2430–2435

    Article  PubMed  Google Scholar 

  • Chiu BY, Chang CP, Lin JW, Yu JS, Liu WP, Hsu YC, Lin MT (2014) Beneficial effect of astragalosides on stroke condition using PC12 cells under oxygen glucose deprivation and reperfusion. Cell Mol Neurobiol 34:825–837

    Article  PubMed  CAS  Google Scholar 

  • Clark RS, Bayir H, Chu CT, Alber SM, Kochanek PM, Watkins SC (2008) Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy 4:88–90

    Article  PubMed  CAS  Google Scholar 

  • Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W (2012) Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One 7:e35324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dohi E, Tanaka S, Seki T, Miyagi T, Hide I, Takahashi T, Matsumoto M, Sakai N (2012) Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem Int 60:431–442

    Article  PubMed  CAS  Google Scholar 

  • Ginet V, Puyal J, Clarke PG, Truttmann AC (2009) Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. Am J Pathol 175:1962–1974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haas IG (1994) BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia 50:1012–1020

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Chan PH (2003) Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. J Cereb Blood Flow Metab 23(8):949–961

    Article  PubMed  Google Scholar 

  • Hillion JA, Takahashi K, Maric D, Ruetzler C, Barker JL, Hallenbeck JM (2005) Development of an ischemic tolerance model in a PC12 cell line. J Cereb Blood Flow Metab 25(2):154–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hol EM, Scheper W (2008) Protein quality control in neurodegeneration: walking the tight rope between health and disease. J Mol Neurosci 34:23–33

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Lv H, Liao M, Xu X, Huang S, Tan H, Peng T, Zhang Y, Li H (2012) GRP78 counteracts cell death and protein aggregation caused by mutant huntingtin proteins. Neurosci Lett 516:182–187

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812

    Article  PubMed  CAS  Google Scholar 

  • Kang C, Avery L (2008) To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy 4:82–84

    Article  PubMed  Google Scholar 

  • Kang L, Zhang G, Yan Y, Ke K, Wu X, Gao Y, Li J, Zhu L, Wu Q, Zhou Z (2013) The role of HSPA12B in regulating neuronal apoptosis. Neurochem Res 38:311–320

    Article  PubMed  CAS  Google Scholar 

  • Kashyap MP, Singh AK, Kumar V, Tripathi VK, Srivastava RK, Agrawal M, Khanna VK, Yadav S, Jain SK, Pant AB (2011) Monocrotophos induced apoptosis in PC12 cells: role of xenobiotic metabolizing cytochrome P450s. PLoS One 6(3):e17757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15:4829–4840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, Tanaka K, Uchiyama Y (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172:454–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Komatsu M, Ueno T, Waguri S, Uchiyama Y, Kominami E, Tanaka K (2007) Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ 14:887–894

    PubMed  CAS  Google Scholar 

  • Kostandy BB (2012) The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol. Sci. 33:223–237

    Article  PubMed  Google Scholar 

  • Kritis A, Pourzitaki C, Klagas I, Chourdakis M, Albani M (2011) Proteases inhibition assessment on PC12 and NGF treated cells after oxygen and glucose deprivation reveals a distinct role for aspartyl proteases. PloS One 6(10):e25950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai Y, Hickey RW, Chen Y, Bayır H, Sullivan ML, Chu CT, Kochanek PM, Dixon CE, Jenkins LW, Graham SH, Watkins SC, Clark RS (2008) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant γ-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28(3):540–550

    Article  PubMed  CAS  Google Scholar 

  • Lee AS (2014) Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer 14:263–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu CL, Chen S, Dietrich D, Hu BR (2008) Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab 28(4):674–683

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein DH, Chan PH, Miles MF (1991) The stress protein response in cultured neurons: characterization and evidence for a protective role in excitotoxicity. Neuron 7:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Luo S, Baumeister P, Yang S, Abcouwer SF, Lee AS (2003) Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. J Biol Chem 278:37375–37385

    Article  PubMed  CAS  Google Scholar 

  • Luo CL, Li BX, Li QQ, Chen XP, Sun YX, Bao HJ, Dai DK, Shen YW, Xu HF, Ni H, Wan L, Qin ZH, Tao LY, Zhao ZQ (2011) Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 184:54–63

    Article  PubMed  CAS  Google Scholar 

  • Massa SM, Longo FM, Zuo J, Wang S, Chen J, Sharp FR (1995) Cloning of rat grp75, an hsp70-family member, and its expression in normal and ischemic brain. J Neurosci Res 40:807–819

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    Article  PubMed  CAS  Google Scholar 

  • Mo Z, Fang Y, He Y, Ke X (2012a) Change of Beclin-1 dependent on ATP, [Ca(2+)](i) and MMP in PC12 cells following oxygen-glucose deprivation-reoxygenation injury. Cell Biol Int 36:1043–1048

    Article  PubMed  CAS  Google Scholar 

  • Mo ZT, Fang YQ, He YP, Zhang S (2012b) beta-Asarone protects PC12 cells against OGD/R-induced injury via attenuating Beclin-1-dependent autophagy. Acta Pharmacol Sin 33:737–742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olender T, Safran M, Edgar R, Stelzer G, Nativ N, Rosen N, Shtrichman R, Mazor Y, West MD, Keydar I, Rappaport N, Belinky F, Warshawsky D, Lancet D (2013) An overview of synergistic data tools for biological scrutiny. Isr J Chem 53:185–198

    Article  CAS  Google Scholar 

  • Outeiro TF, Tetzlaff J (2007) Mechanisms of disease II: cellular protein quality control. Semin Pediatr Neurol 14:15–25

    Article  PubMed  Google Scholar 

  • Pamenter ME, Perkins GA, McGinness AK, Gu XQ, Ellisman MH, Haddad GG (2012) Autophagy and apoptosis are differentially induced in neurons and astrocytes treated with an in vitro mimic of the ischemic penumbra. PLoS.One 7:e51469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papadopoulou LC, Tsiftsoglou AS (1996) Effects of hemin on apoptosis, suppression of cytochrome c oxidase gene expression, and bone-marrow toxicity induced by doxorubicin (adriamycin). Biochem Pharmacol 52:713–722

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar B, Futter M, Jahreiss L, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Narayanan U, Renna M, Jimenez-Sanchez M, Sarkar S, Underwood B, Winslow A, Rubinsztein DC (2009) Mammalian macroautophagy at a glance. J Cell Sci 122:1707–1711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278:20915–20924

    Article  PubMed  CAS  Google Scholar 

  • Renaud J, Bournival J, Zottig X, Martinoli MG (2014) Resveratrol protects DAergic PC12 cells from high glucose-induced oxidative stress and apoptosis: effect on p53 and GRP75 localization. Neurotox Res 25:110–123

    Article  PubMed  CAS  Google Scholar 

  • Sabri M, Lass E, Macdonald RL (2013) Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat 2013:394036

    PubMed  PubMed Central  Google Scholar 

  • Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10:2208–2222

    Article  PubMed  CAS  Google Scholar 

  • Seki T, Yoshino KI, Tanaka S, Dohi E, Onji T, Yamamoto K, Hide I, Paulson HL, Saito N, Sakai N (2012) Establishment of a novel fluorescence-based method to evaluate chaperone-mediated autophagy in a single neuron. PloS one 7(2):e31232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheng R, Zhang LS, Han R, Liu XQ, Gao B, Qin ZH (2010) Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 6:482–494

    Article  PubMed  CAS  Google Scholar 

  • Sheng R, Liu X, Zhang L, Gao B, Han R, Wu Y, Zhang X, Qin Z (2012) Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 8:310–325

    Article  PubMed  CAS  Google Scholar 

  • Stricher F, Macri C, Ruff M, Muller S (2013) HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 9:1937–1954

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Liu B, Ma J (2014) Research progress in traumatic brain penumbra. Chin Med J (Engl) 127:1964–1968

    Google Scholar 

  • Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769

    Article  PubMed  CAS  Google Scholar 

  • Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285(14):10850–10861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xin Q, Ji B, Cheng B, Wang C, Liu H, Chen X, Chen J, Bai B (2014) Endoplasmic reticulum stress in cerebral ischemia. Neurochem Int 68:18–27

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Gu JH, Qin ZH (2012) Neuronal autophagy in cerebral ischemia. Neurosci Bull 28:658–666

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L (2011) Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res 1402:109–121

    Article  PubMed  CAS  Google Scholar 

  • Yorimitsu T, Nair U, Yang Z, Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281:30299–30304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, Hagberg H (2006) Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem 96:1016–1027

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Zafiroula Iakovidou-Kritsi director of the laboratory of General Biology, Department of Biological Sciences and Preventive Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, for granting access to fluorescent microscopy.

Funding

The present work was supported by the Program for Basic Research Activity Enhancement of the Research Committee of Aristotle University (Project Number 89337), European Union/European Social Fund EPEAEK PYTHGORAS II (Project Number 13) as well as the yearly Laboratory of Physiology fund allocation. No additional external funding was received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristeidis Kritis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavilis, T., Delivanoglou, N., Aggelidou, E. et al. Oxygen–Glucose Deprivation (OGD) Modulates the Unfolded Protein Response (UPR) and Inflicts Autophagy in a PC12 Hypoxia Cell Line Model. Cell Mol Neurobiol 36, 701–712 (2016). https://doi.org/10.1007/s10571-015-0250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0250-2

Keywords

Navigation