Skip to main content
Log in

Research progress and challenges of composite wound dressings containing plant extracts

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Wound, burn and tissue-related diseases have caused serious physical and mental trauma to patients, as well as a huge economic burden to society. To address this challenge, continuous efforts have been made to develop wound dressings to deal with various types of intractable wounds, and thus wound dressings have been undergoing rapidly updating. Various plant extracts have been widely applied to biomedical and tissue engineering due to their excellent biocompatibility, antibacterial and anti-inflammatory properties, and low side effects. Based on this, researchers are committed to designing novel wound dressings for the treatment of skin injuries by combining plant extracts with different types of polymer-based biomaterials, including films, hydrocolloids, sponges, foams, hydrogels, and nanofiber dressings. In this review, classification by the types of wound dressing, the composite wound dressings containing various plant extracts have been summarized, mainly focusing on their applications in skin injuries; importantly, the prospects and challenges for the development of composite wound dressings with plant extracts have been discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2013. Reproduced with permission from Elsevier B-I CS was blended with capsaicin to prepare the film; B-II The appearance and UV/VIS transmittance of CS-capsaicin blend films with different concentrations of capsaicin; B-III Plate diffusion assay for the QS inhibition and inhibition zone (mm) (grey bars) of disc diffusion test and quantitative determination of violacein inhibition (%) (black squares) by CS-capsaicin blend films (Akyuz et al. 2018). Copyright 2018. Reproduced with permission from Elsevier. C-I Film dressing of M. oleifera leaf (MOL) extract doped SA-PC; C-II Expansion ratio of MOL aqueous extract-loaded film formulations (mean ± SD, n = 3). The asterisks (*) represent significant difference (*P < 0.05) to SA-PC. C-III and C-IV Wound healing assay using human dermal fibroblast (HDF) and human epidermal keratinocytes (HEK) treated with MOL aqueous extract, respectively (Chin et al. 2018) Copyright 2017. Reproduced with permission from Elsevier

Fig. 4

Copyright 2015. Reproduced with permission from Elsevier. B-I Hydrocolloid film based on PC, starch and Gunnera tinctoria and Ugni molinae plant extracts; B-II SEM images of fractured surfaces of hydrocolloid films: (a) PS-0 (without extract); (b) PS-MN(with G. tinctoria and U. molinae extracts (1:1)); (c) PS-M (with U. molinae extract) and (d) PS-N (with G. tinctoria extract); B-III Macroscopic photographs of the wounds treated with PS-0 (a) and PS-MN (b) hydrocolloid films, and corresponding histological images (c–f) stained in hematoxylin and eosin of transverse sections of the wound at the fourth day (Sabando et al. 2020). Copyright 2020. Reproduced with permission from Bentham Science Publishers Ltd. (bar: 50 µm)

Fig. 5

Copyright 2015. Reproduced with permission from SAGE Publications. B-I Graphical abstract of PU foam dressing; B-II The SEM photographs of the obtained foams with 6% of SA; B-III Wound appearance at day 0, 4, 7, 14 and 21 after treatment of commercial dressings (comparative I and II) compared to foam with 6% SA impregnated with silver and asiaticoside (A6-1Ag-AS) (Namuiriyachote et al. 2019)

Fig. 6

Reproduced with permission from Elsevier. B-I Photographic (a) and SEM (b) image of dressings CS, CSM and CSPE; B-II Antimicrobial properties of CS, CSM and CSPE composites against various bacterial strains (P < 0.05) (Muthukumar et al. 2014a); Copyright 2013. Reproduced with permission from Elsevier. B-III Photographs of wound-healing patterns on 12th days; B-IV Differential expression of MMP 2 and MMP 9 in granulation tissue (Muthukumar et al. 2014b). Copyright 2013. Reproduced with permission from RSC Publishing. C-I Appearance photograph and SEM micrographs of CS-alginate sponge (C2A2). (left: pure sponge; right: sponge with curcumin); C-II Total wound area of skin over time as a percentage of original wound size; C-III Masson’s Trichrome staining for collagen: twelve-day post wounding (40 ×) (Dai et al. 2009). D-I The preparation process of BSP sponges; D-II The fast water absorption by BSP sponge-4; D-III Photographs of wounds after commercial dressings (Gelatin sponge) and BSP sponge-4 treatment; D-IV Representative images of BSP sponge-4 and gelatin sponge-treated samples stained with Masson’s trichrome (Zhang et al. 2019). (bar: 20 μm)

Fig. 7

Copyright 2021. Reproduced with permission from American Chemical Society. B-I The preparation of multi-functions OPC B2/PBCD gels; B-II Swelling rate of PBCD gels; B-III Adhesion, injectability and autonomous healing properties of the hydrogels; B-IV Antioxidant test of PBCD gel. (bar: 100 µm); B-V Photographs of the wounds with different treatments on days 10 (Zhou et al. 2021). Copyright 2021. Reproduced with permission from John Wiley and Sons. C-I The injectability and self-healing ability of the TA-HA-PBA dynamic hydrogel; C-II The pH and ROS responsive drug release properties of HA-PBA-TA hydrogel; C-III Disc diffusion assay against MRSA and P. aeruginosa; C-IV Representative confocal images of ROS (DCFHA) staining (Shi et al. 2021). Copyright 2021. Reproduced with permission from John Wiley and Sons. (bar: 50 mm)

Fig. 8

Copyright 2020. Reproduced with permission from Elsevier. B-I Nanofiber morphology of the plain and the C. majus-loaded nanofibrous meshes; B-II The mechanical behavior of the produced PCL/PVA_PEC nanofibrous meshes with and without C. majus; B-III Evaluation of the NHDF cell direct contact with the produced nanofibrous meshes (“n.s.” indicates not significant (P > 0.05)) (Naeimi et al. 2020)

Similar content being viewed by others

Abbreviations

PE:

Polyethylene

PVC:

Polyvinyl chloride

PTFE:

Polytetrafluoroethylene

AV:

Aloe vera

SA:

Sodium alginate

CS:

Chitosan

AgNPs:

Silver nanoparticles

QS:

Quorum sensing

PLA:

Polylactic acid

PEG:

Polyethylene glycol

EtPUAE:

Ethanolic ultrasound assisted extracts

MMPs:

Matrix metalloproteinase

CGP:

Cashew gum polysaccharide

PVA:

Polyvinyl alcohol

T. vulgaris :

Thymus vulgaris

SSI:

Supercritical solvent impregnation

O. vulgare :

Origanum vulgare

ESM:

Eggshell membrane

SEP:

Soluble eggshell membrane

M.oleifera :

Moringa oleifera

PEC:

Pectin

NaCMC:

Sodium carboxymethylcellulose

AC:

Antrodia camphorate

GE/SFP:

Gastrodia elata/silk fibroin protein

TTO/SFP:

Tea tree oil/silk fibroin protein

PU:

Polyurethane

AS:

Asiaticoside

AR:

Astragali Radix

CS:

Collagen sponges

CSM:

Collagen sponges containing mupirocin

CSPE:

Collagen sponges containing mupirocin and extracts of Macrotyloma uniflorum

PRP-Exos:

Platelet-rich plasma exosomes

BS:

Bletilla striata

BSP:

Bletilla striata Polysaccharide

GBS-Ag:

Salvia miltiorrhiza And AgNPs

HA:

Hyaluronic acid

PEG:

Polyethylene glycol

PEO:

Polyethylene oxide

HG:

Gelatin hydrogels

HEC:

Hydroxyethylcellulose

PVP:

Polyvinylpyrrolidone

HPMC:

Hypromellose

PA:

Protocatechuic aldehyde

NIR:

Near infrared responsiveness

QCS:

Quaternized chitosan

OPCs:

Oligomeric proanthocyanidins

γ-PGA:

Poly-γ-glutamic acid

PUE:

Puerarin

FA:

Ferulic acid

TA:

Tannins

Sl:

Saussurea lappa

SI-AgNPs:

Saussurea lappa, Aqueous root extract modified AgNPs

PGPC:

Punica granatum peel crude extract

ECM:

Extracellular matrix

C. majus :

Chelidonium majus L.

PCL:

Polycaprolactone

CC:

Coptis chinensis

F.vulgaris-AgNPs:

Falcaria vulgaris extract modified AgNPs

SLE:

Soursop leaves extract

References

  • Abazari M, Akbari T, Hasani M, Sharifikolouei E, Raoufi M, Foroumadi A, Sharifzadeh M, Firoozpour L, Khoobi M (2022) Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydr Polym 294:119808

    Article  CAS  PubMed  Google Scholar 

  • Adhirajan N, Shanmugasundaram N, Shanmuganathan S, Babu M (2009) Functionally modified gelatin microspheres impregnated collagen scaffold as novel wound dressing to attenuate the proteases and bacterial growth. Eur J Pharm Sci 36:235–245

    Article  CAS  PubMed  Google Scholar 

  • Agyare C, Boakye YD, Bekoe EO, Hensel A, Dapaah SO, Appiah T (2016) Review: African medicinal plants with wound healing properties. J Ethnopharmacol 177:85–100

    Article  CAS  PubMed  Google Scholar 

  • Akyuz L, Kaya M, Mujtaba M, Ilk S, Sargin I, Salaberria AM, Labidi J, Cakmak YS, Islek C (2018) Supplementing capsaicin with chitosan-based films enhanced the anti-quorum sensing, antimicrobial, antioxidant, transparency, elasticity and hydrophobicity. Int J Biol Macromol 115:438–446

    Article  CAS  PubMed  Google Scholar 

  • Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124

    Article  CAS  PubMed  Google Scholar 

  • Arora V, Campbell JN, Chung M-K (2021) Fight fire with fire: neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 220:107743

    Article  CAS  PubMed  Google Scholar 

  • Aruan NM, Sriyanti I, Edikresnha D, Suciati T, Munir MM (2017) Polyvinyl alcohol/soursop leaves extract composite nanofibers synthesized using electrospinning technique and their potential as antibacterial wound dressing. Proc Eng 170:31–35

    Article  CAS  Google Scholar 

  • AU2021104295A4 (2021) An innovative bioactive dressing for treating wounds using herbs & cow urine

  • Bagher Z, Ehterami A, Safdel MH, Khastar H, Semiari H, Asefnejad A, Davachi SM, Mirzaii M, Salehi M (2020) Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J Drug Deliv Sci Technol 55:101379

    Article  CAS  Google Scholar 

  • Bai M-Y, Chen M-C, Yu W-C, Lin J-Y (2017) Foam dressing incorporating herbal extract: an all-natural dressing for potential use in wound healing. J Bioact Compat Polym 32:293–308

    Article  CAS  Google Scholar 

  • Bakr RO, Amer RI, Attia D, Abdelhafez MM, Al-Mokaddem AK, El-Gendy AE-NG, El-Fishawy AM, Fayed MAA, Gad SS (2021) In-vivo wound healing activity of a novel composite sponge loaded with mucilage and lipoidal matter of hibiscus species. Biomed Pharmacother 135:111225

    Article  CAS  PubMed  Google Scholar 

  • Balasubramaniam MP, Murugan P, Chenthamara D, Ramakrishnan SG, Salim A, Lin F-H, Robert B, Subramaniam S (2020) Synthesis of chitosan-ferulic acid conjugated poly(vinyl alcohol) polymer film for an improved wound healing. Mater Today Commun 25:101510

    Article  CAS  Google Scholar 

  • Bardania H, Mahmoudi R, Bagheri H, Salehpour Z, Fouani MH, Darabian B, Khoramrooz SS, Mousavizadeh A, Kowsari M, Moosavifard SE, Christiansen G, Javeshghani D, Alipour M, Akrami M (2020) Facile preparation of a novel biogenic silver-loaded nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing. Sci Rep 10:6129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharathi S, Ramesh B, Kumaran S, Radhakrishnan M, Saravanan D, Saravanan P, Pugazhvendan SR, Nalinasundari MS (2021) Development of nanobiomaterial for wound healing based on silver nanoparticles loaded on chitosan hydrogel. 3 Biotech 11:490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bras T, Rosa D, Goncalves AC, Gomes AC, Alves VD, Crespo JG, Duarte MF, Neves LA (2020) Development of bioactive films based on chitosan and Cynara cardunculus leaves extracts for wound dressings. Int J Biol Macromol 163:1707–1718

    Article  CAS  PubMed  Google Scholar 

  • Castleberry SA, Almquist BD, Li W, Reis T, Chow J, Mayner S, Hammond PT (2016) Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater 28:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Chaganti P, Gordon I, Chao JH, Zehtabchi S (2019) A systematic review of foam dressings for partial thickness burns. Am J Emerg Med 37:1184–1190

    Article  PubMed  Google Scholar 

  • Chanaj-Kaczmarek J, Paczkowska M, Osmalek T, Kapron B, Plech T, Szymanowska D, Karazniewicz-Lada M, Kobus-Cisowska J, Cielecka-Piontek J (2020) Hydrogel delivery system containing Calendulae flos lyophilized extract with chitosan as a supporting strategy for wound healing applications. Pharmaceutics 12:634

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapa-Oliver AM, Mejia-Teniente L (2016) Capsaicin: from plants to a cancer-suppressing agent. Molecules 21:931

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J-J, Lin W-J, Liao C-H, Shieh P-C (2007) Anti-inflammatory benzenoids from Antrodia camphorata. J Nat Prod 70:989–992

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Guo J, Bao J, Lu J, Wang Y (2014) The anticancer properties of Salvia miltiorrhiza bunge (Danshen): a systematic review. Med Res Rev 34:768–794

    Article  CAS  PubMed  Google Scholar 

  • Chin C-Y, Jalil J, Ng PY, Ng S-F (2018) Development and formulation of Moringa oleifera standardised leaf extract film dressing for wound healing application. J Ethnopharmacol 212:188–199

    Article  CAS  PubMed  Google Scholar 

  • Cho JY, Kim AR, Joo HG, Kim BH, Rhee MH, Yoo ES, Katz DR, Chain BM, Jung JH (2004) Cynaropicrin, a sesquiterpene lactone, as a new strong regulator of CD29 and CD98 functions. Biochem Biophys Res Commun 313:954–961

    Article  CAS  PubMed  Google Scholar 

  • Chopra H, Bibi S, Kumar S, Khan MS, Kumar P, Singh I (2022) Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application. Gels 8(2):111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra H, Kumar S, Singh I (2022b) Strategies and therapies for wound healing: a review. Curr Drug Targets 23:87–98

    Article  CAS  PubMed  Google Scholar 

  • Chopra H, Bibi S, Mohanta YK, Kumar Mohanta T, Kumar S, Singh I, Saad Khan M, Ranjan Rauta P, Alshammari A, Alharbi M, Alasmari F (2023) In vitro and in silico characterization of curcumin-loaded chitosan-PVA hydrogels: antimicrobial and potential wound healing activity. Gels 9(5):394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuschieri L, Debosz J, Miiller P, Celis M (2013) Autolytic debridement of a large, necrotic, fully occluded foot ulcer using a hydrocolloid dressing in a diabetic patient. Adv Wound Care 26:300–304

    Article  Google Scholar 

  • Dai M, Zheng X, Xu X, Kong X, Li X, Guo G, Luo F, Zhao X, Wei YQ, Qian Z (2009) Chitosan-alginate sponge: preparation and application in curcumin delivery for dermal wound healing in rat. J Biomed Biotechnol 2009:595126

    Article  PubMed  PubMed Central  Google Scholar 

  • Dat AD, Poon F, Pham KBT, Doust J (2012) Aloe vera for treating acute and chronic wounds. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008762

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhivya S, Padma VV, Santhini E (2015) Wound dressings: a review. Biomedicine 5:22–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias AMA, Braga MEM, Seabra IJ, Ferreira P, Gil MH, de Sousa HC (2011) Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int J Pharm 408:9–19

    Article  CAS  PubMed  Google Scholar 

  • Dimatteo R, Darling NJ, Segura T (2018) In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev 127:167–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumville JC, Deshpande S, O’Meara S, Speak K (2013) Hydrocolloid dressings for healing diabetic foot ulcers. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009099.pub3/full

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi-Hosseinzadeh B, Pedram M, Hatamian-Zarmi A, Salahshour-Kordestani S, Rasti M, Mokhtari-Hosseini ZB, Mir-Derikvand M (2016) In vivo evaluation of gelatin/hyaluronic acid nanofiber as burn-wound healing and its comparison with chitoheal gel. Fibers Polym 17:820–826

    Article  CAS  Google Scholar 

  • Farahpour MR (2019) Medicinal plants in wound healing. Wound healing—current perspectives, London

    Book  Google Scholar 

  • Fatehi P, Abbasi M (2020) Medicinal plants used in wound dressings made of electrospun nanofibers. J Tissue Eng Regen Med 14:1527–1548

    Article  CAS  PubMed  Google Scholar 

  • Ghomi ER, Khalili S, Khorasani SN, Neisiany RE, Ramakrishna S (2019) Wound dressings: current advances and future directions. J Appl Polym Sci 136:47738

    Article  Google Scholar 

  • Ghosh PK, Gaba A (2013) Phyto-extracts in wound healing. J Pharm Pharm Sci 16:760–820

    Article  PubMed  Google Scholar 

  • Gomez Chabala LF, Echeverri Cuartas CE, Londono Lopez ME (2017) Release behavior and antibacterial activity of chitosan/alginate blends with aloe vera and silver nanoparticles. Mar Drugs 15:328

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo S, Yao M, Zhang D, He Y, Chang R, Ren Y, Guan F (2022) One-step synthesis of multifunctional chitosan hydrogel for full-thickness wound closure and healing. Adv Healthc Mater 11:e2101808

    Article  PubMed  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  • Han DO, Lee HJ, Hahm DH (2009) Wound-healing activity of Astragali radix in rats. Methods Find Exp Clin Pharmacol 31:95–100

    Article  PubMed  Google Scholar 

  • Hasanzadeh S, Read MI, Bland AR, Majeed M, Jamialahmadi T, Sahebkar A (2020) Curcumin: an inflammasome silencer. Pharmacol Res 159:104921

    Article  PubMed  Google Scholar 

  • He X, Wang X, Fang J, Zhao Z, Huang L, Guo H, Zheng X (2017) Bletilla striata: medicinal uses, phytochemistry and pharmacological activities. J Ethnopharmacol 195:20–38

    Article  CAS  PubMed  Google Scholar 

  • Homaeigohar S, Boccaccini AR (2020) Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater 107:25–49

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Xu F-J (2020) Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomater Sci 8:2084–2101

    Article  CAS  PubMed  Google Scholar 

  • Imtiaz N, Niazi MBK, Fasim F, Khan BA, Bano SA, Shah GM, Badshah M, Menaa F, Uzair B (2019) Fabrication of an original transparent PVA/gelatin hydrogel: in vitro antimicrobial activity against skin pathogens. Int J Polym Sci 2019:7651810

    Article  Google Scholar 

  • Jalili-Firoozinezhad S, Filippi M, Mohabatpour F, Letourneur D, Scherberich A (2020) Chicken egg white: hatching of a new old biomaterial. Mater Today 40:193–214

    Article  CAS  Google Scholar 

  • Jiao C, Deng M, Ma Y, Hu G (2021) Effect and repair mechanism of nano Ag sponge dressing combined with gelatin-Bletilla Striata gum/Salvia miltiorrhiza on refractory orthopedic wounds. Biomed Res Int 2021:887235

    Article  Google Scholar 

  • Jin SG, Kim KS, Yousaf AM, Kim DW, Jang SW, Son M-W, Kim YH, Yong CS, Kim JO, Choi H-G (2015) Mechanical properties and in vivo healing evaluation of a novel Centella asiatica-loaded hydrocolloid wound dressing. Int J Pharm 490:240–247

    Article  CAS  PubMed  Google Scholar 

  • Jung S-M, Kim DS, Ju JH, Shin HS (2013) Assessment of Spirulina-PCL nanofiber for the regeneration of dermal fibroblast layers. In Vitro Cell Dev Biol Anim 49:27–33

    Article  CAS  PubMed  Google Scholar 

  • Jung S-M, Min SK, Lee HC, Kwon YS, Jung MH, Shin HS (2016) Spirulina-PCL nanofiber wound dressing to improve cutaneous wound healing by enhancing antioxidative mechanism. J Nanomater. 2016. https://doi.org/10.1155/2016/6135727

    Article  Google Scholar 

  • Kachur K, Suntres Z (2020) The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit Rev Food Sci Nutr 60:3042–3053

    Article  CAS  PubMed  Google Scholar 

  • Kamoun EA, Kenawy E-RS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabata K, Mukai R, Ishisaka A (2015) Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct 6:1399–1417

    Article  CAS  PubMed  Google Scholar 

  • Kim MH, Park H, Nam HC, Park SR, Jung J-Y, Park WH (2018) Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing. Carbohydr Polym 181:579–586

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Sun X, Lee J-H, Kim H-W, Fu X, Leong KW (2019) Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 146:209–239

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Ichihara Y, Sato N, Umeda N, Fields L, Fukumitsu M, Tago Y, Ito T, Kainuma S, Podaru M, Lewis-McDougall F, Yamahara K, Uppal R, Suzuki K (2019) On-site fabrication of bi-layered adhesive mesenchymal stromal cell-dressings for the treatment of heart failure. Biomaterials 209:41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohsari I, Shariatinia Z, Pourmortazavi SM (2016) Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydr Polym 140:287–298

    Article  CAS  PubMed  Google Scholar 

  • Krishnan AK, Thomas S (2019) Recent advances on herb-derived constituents-incorporated wound-dressing materials: a review. Polym Adv Technol 30:823–838

    Article  Google Scholar 

  • Kumar MS, Kirubanandan S, Sripriya R, Sehgal PK (2010) Triphala incorporated collagen sponge-a smart biomaterial for infected dermal wound healing. J Surg Res 158:162–170

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Mukherjee A, Dutta J (2020) Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends Food Sci Technol 97:196–209

    Article  CAS  Google Scholar 

  • Li Y, Rodrigues J, Tomas H (2012) Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 41:2193–2221

    Article  CAS  PubMed  Google Scholar 

  • Li H, Sureda A, Devkota HP, Pittala V, Barreca D, Silva AS, Tewari D, Xu S, Nabavi SM (2020) Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol Adv 38:107343

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, He J, Guo B (2021a) Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15:12687–12722

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Li Z, Huang Y, Yu R, Guo B (2021b) Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 15:7078–7093

    Article  CAS  PubMed  Google Scholar 

  • Lin J-H, Lu C-T, Hu J-J, Chen Y-S, Huang C-H, Lou C-W (2012) Property evaluation of Bletilla striata/polyvinyl alcohol nano fibers and composite dressings. J Nanomater 2012:519516

    Article  Google Scholar 

  • Liu W-C, Wang H-Y, Lee T-H, Chung R-J (2019) Gamma-poly glutamate/gelatin composite hydrogels crosslinked by proanthocyanidins for wound healing. Mater Sci Eng C Mater Biol Appl 101:630–639

    Article  CAS  PubMed  Google Scholar 

  • Martini P, Mazzatenta C, Saponati G (2011) Efficacy and tolerability of fitostimoline in two different forms (soaked gauzes and cream) and citrizan gel in the topical treatment of second-degree superficial cutaneous burns. Dermatol Res Pract 2011:978291–978291

    Article  PubMed  PubMed Central  Google Scholar 

  • Maver T, Kurecic M, Pivec T, Maver U, Gradisnik L, Gasparic P, Kaker B, Bratusa A, Hribernik S, Stana Kleinschek K (2020) Needleless electrospun carboxymethyl cellulose/polyethylene oxide mats with medicinal plant extracts for advanced wound care applications. Cellulose 27:4487–4508

    Article  CAS  Google Scholar 

  • Moeini A, Pedram P, Makvandi P, Malinconico M, d’Ayala GG (2020) Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr Polym 233:115839

    Article  CAS  PubMed  Google Scholar 

  • Monteiro FMF, de Silva GMDM, da Silva JBR, Porto CS, de Carvalho Jr LB, de Lima Filho JL, Porto ALF (2007) Immobilization of trypsin on polysaccharide film from Anacardium occidentale L. and its application as cutaneous dressing. Process Biochem 42:884–888

    Article  CAS  Google Scholar 

  • Moreira BR, Batista KA, Castro EG, Lima EM, Fernandes KF (2015) A bioactive film based on cashew gum polysaccharide for wound dressing applications. Carbohydr Polym 122:69–76

    Article  CAS  PubMed  Google Scholar 

  • Mouro C, Gomes AP, Ahonen M, Fangueiro R, Gouveia IC (2021) Chelidoniummajus L. incorporated emulsion electrospun PCL/PVA_PEC nanofibrous meshes for antibacterial wound dressing applications. Nanomaterials 11:1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munin A, Edwards-Levy F (2011) Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3:793–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumar T, Prabu P, Ghosh K, Sastry TP (2014a) Fish scale collagen sponge incorporated with macrotyloma uniflorum plant extract as a possible wound/burn dressing material. Colloids Surf B 113:207–212

    Article  CAS  Google Scholar 

  • Muthukumar T, Prakash D, Anbarasu K, Kumar BS, Sastry TP (2014b) Effect of collagen sponge incorporating macrotyloma uniflorum extract on full-thickness wound healing by down-regulation of matrix metalloproteinases and inflammatory markers. Rsc Adv 4:64267–64276

    Article  CAS  Google Scholar 

  • Nabavi SF, Russo GL, Daglia M, Nabavi SM (2015) Role of quercetin as an alternative for obesity treatment: you are what you eat! Food Chem 179:305–310

    Article  CAS  PubMed  Google Scholar 

  • Naeimi A, Payandeh M, Ghara AR, Ghadi FE (2020) In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/ polyvinyl alcohol incorporating honey and Nepeta dschuparensis. Carbohydr Polym 240:6135727

    Article  Google Scholar 

  • Namuiriyachote N, Lipipun V, Althhatuattananglzul Y, Charoonrut P, Ritthidej GC (2019) Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J Pharm 14:63–77

    Google Scholar 

  • Namviriyachote N, Manosittisak K, Ritthidej GC (2016) Physico-mechanical characterization of polyurethane foam dressings containing natural polyols. Asian J Pharm 11:114–115

    Google Scholar 

  • Ochoa M, Rahimi R, Zhou J, Jiang H, Yoon CK, Maddipatla D, Narakathu BB, Jain V, Oscai MM, Morken TJ, Oliveira RH, Campana GL, Cummings OW, Zieger MA, Sood R, Atashbar MZ, Ziaie B (2020) Integrated sensing and delivery of oxygen for next-generation smart wound dressings. Microsyst Nanoeng 6(1):46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okur ME, Karantas ID, Senyigit Z, Okur NU, Siafaka PI (2020) Recent trends on wound management: new therapeutic choices based on polymeric carriers. Asian J Pharml 15:661–684

    Google Scholar 

  • Ou Q, Zhang S, Fu C, Yu L, Xin P, Gu Z, Cao Z, Wu J, Wang Y (2021) More natural more better: triple natural anti-oxidant puerarin/ferulic acid/polydopamine incorporated hydrogel for wound healing. J Nanobiotechnol 19:237

    Article  CAS  Google Scholar 

  • Pereira R, Mendes A, Bartolo P (2013) Alginate/aloe vera hydrogel films for biomedical applications, Vol 5: 1st CIRP conference on biomanufacturing (CIRP-BioM) (ed, Univ Tokyo, Japan, pp 210–215

  • Pleeging CCF, Wagener FADTG, de Rooster H, Cremers NAJ (2022) Revolutionizing non-conventional wound healing using honey by simultaneously targeting multiple molecular mechanisms. Drug Resist Updat 62:100834

    Article  CAS  PubMed  Google Scholar 

  • Prasathkumar M, Sadhasivam S (2021) Chitosan/hyaluronic acid/alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-know-how. Int J Biol Macromol 186:656–685

    Article  CAS  PubMed  Google Scholar 

  • Probst S, Saini C, Skinner MB (2019) Comparison of sterile polyacrylate wound dressing with activated carbon cloth and a standard non-adhesive hydrocellular foam dressing with silver: a randomised controlled trial protocol. J Wound Care 28:722–728

    Article  PubMed  Google Scholar 

  • Qian Z, Wang H, Bai Y, Wang Y, Tao L, Wei Y, Fan Y, Guo X, Liu H (2020) Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release. ACS Appl Mater Interfaces 12:55659–55674

    Article  CAS  PubMed  Google Scholar 

  • Raafat AI, Ali AE-H (2019) A novel Lawsonia inermis (henna)/(hydroxyethylcellulose/ polyvinylpyrrolidone) wound dressing hydrogel: radiation synthesis, characterization and biological evaluation. Polym Bull 76:4069–4086

    Article  Google Scholar 

  • Ragab TIM, Nada AA, Ali EA, Shalaby ASG, Soliman AAF, Emam M, El Raey MA (2019) Soft hydrogel based on modified chitosan containing P. granatum peel extract and its nano-forms: multiparticulate study on chronic wounds treatment. Int J Biol Macromol 135:407–421

    Article  CAS  PubMed  Google Scholar 

  • Rieger KA, Schiffman JD (2014) Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydr Polym 113:561–568

    Article  CAS  PubMed  Google Scholar 

  • Romanelli M, Macchia M, Panduri S, Paggi B, Saponati G, Dini V (2015) Clinical evaluation of the efficacy and safety of a medical device in various forms containing Triticum vulgare for the treatment of venous leg ulcers—a randomized pilot study. Drug Des Devel Ther 9:2787–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosca AE, Iesanu MI, Zahiu CDM, Voiculescu SE, Paslaru AC, Zagrean A-M (2020) Capsaicin and gut microbiota in health and disease. Molecules 25:5681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabando C, Ide W, Rodriguez-Diaz M, Cabrera-Barjas G, Castano J, Bouza R, Mueller N, Gutierrez C, Barral L, Rojas J, Martinez F, Rodriguez-Llamazares S (2020) A novel hydrocolloid film based on pectin, starch and Gunnera tinctoria and Ugni molinae plant extracts for wound dressing applications. Curr Top Med Chem 20:280–292

    Article  CAS  PubMed  Google Scholar 

  • Sadri M, Arab-Sorkhi S, Vatani H, Bagheri-Pebdeni A (2015) New wound dressing polymeric nanofiber containing green tea extract prepared by electrospinning method. Fibers Polym 16:1742–1750

    Article  CAS  Google Scholar 

  • Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, del Mar CM, Segura-Carretero A, Fathi H, Nasrabadi NN, Kobarfard F, Sharifi-Rad J (2018a) Thymol, thyme, and other plant sources: health and potential uses. Phytother Res 32:1688–1706

    Article  PubMed  Google Scholar 

  • Salehi B, Valussi M, Jugran AK, Martorell M, Ramirez-Alarcon K, Stojanovic-Radic ZZ, Antolak H, Kregiel D, Mileski KS, Sharifi-Rad M, Setzer WN, de la Luz C-G, Segura-Carretero A, Sener B, Sharifi-Rad J (2018b) Nepeta species: from farm to food applications and phytotherapy. Trends Food Sci Technol 80:104–122

    Article  CAS  Google Scholar 

  • Sanchez-Machado DI, Lopez-Cervantes J, Sendon R, Sanches-Silva A (2017) Aloe vera: ancient knowledge with new frontiers. Trends Food Sci Technol 61:94–102

    Article  CAS  Google Scholar 

  • Sato Y, Oketani H, Singyouchi K, Ohtsubo T, Kihara M, Shibata H, Higuti T (1997) Extraction and purification of effective antimicrobial constituents of Terminalia chebula rets against methicillin-resistant staphylococcus aureus. Biol Pharm Bull 20:401–404

    Article  CAS  PubMed  Google Scholar 

  • Sezer AD, Cevher E (2011) Biopolymers as wound healing materials: challenges and new strategies. InTechOpen, London, pp 383–414

    Google Scholar 

  • Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H (2019) Targeting regulatory T cells by curcumin: a potential for cancer immunotherapy. Pharmacol Res 147:104353

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Huang F, Deng C, Wang Y, Kai G (2019) Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza. Crit Rev Food Sci Nutr 59:953–964

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Kong Y, Su Y, Kuss MA, Jiang X, Li X, Xie J, Duan B (2021) Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties. J Mater Chem B 9:7182–7195

    Article  CAS  PubMed  Google Scholar 

  • Silva SS, Popa EG, Gomes ME, Cerqueira M, Marques AP, Caridade SG, Teixeira P, Sousa C, Mano JF, Reis RL (2013) An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomater 9:6790–6797

    Article  CAS  PubMed  Google Scholar 

  • Simoes D, Miguel SP, Ribeiro MP, Coutinho P, Mendonca AG, Correia IJ (2018) Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 127:130–141

    Article  CAS  PubMed  Google Scholar 

  • Singh Bakshi I, Chopra H, Sharma M, Kaushik D, PahwaHaryanto R (2022) Chapter 9—herbal bioactives for wound healing application. In: Bakshi IS (ed) Herbal bioactive-based drug delivery systems. Academic Press, pp 259–282

    Chapter  Google Scholar 

  • Thanh D, Tecilazich F, Kafanas A, Doupis J, Gnardellis C, Leal E, Tellechea A, Pradhan L, Lyons TE, Giurini JE, Veves A (2012) Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes 61:2937–2947

    Article  Google Scholar 

  • Tong Z, Jin L, Oliveira JM, Reis RL, Zhong Q, Mao Z, Gao C (2021) Adaptable hydrogel with reversible linkages for regenerative medicine: dynamic mechanical microenvironment for cells. Bioact Mater 6:1375–1387

    CAS  PubMed  Google Scholar 

  • Tsai T-C, Tung Y-T, Kuo Y-H, Liao J-W, Tsai H-C, Chong K-Y, Chen H-L, Chen C-M (2015) Anti-inflammatory effects of Antrodia camphorata, a herbal medicine, in a mouse skin ischemia model. J Ethnopharmacol 159:113–121

    Article  PubMed  Google Scholar 

  • US20140330192A1 (2014) Dressing for application to a wound or burn

  • US20160106880A1 (2016) Wound dressing materials incorporating anthocyanins derived from fruit or vegetable sources

  • US20160346335A1 (2016) Honey-based dressing for the treatment of wounds and burns

  • Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y (2016) The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technol 56:21–38

    Article  Google Scholar 

  • Wang C, Luo W, Li P, Li S, Yang Z, Hu Z, Liu Y, Ao N (2017) Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata polysaccharide composite hemostatic sponges. Carbohydr Polym 174:432–442

    Article  CAS  PubMed  Google Scholar 

  • Webb BCW, Rafferty S, Vreugdenhil AJ (2022) Preparation and characterization of antibacterial films with eggshell-membrane biopolymers incorporated with chitosan and plant extracts. Polymers 14:383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller CD, Team V, Sussman G (2020) First-line interactive wound dressing update: a comprehensive review of the evidence. Front Pharmacol 11:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller C (2009) Interactive dressings and their role in moist wound management. In: Rajendran S (ed), Advanced textiles for wound care pp 97–113

  • Wu Q, Liu L, Miron A, Klimova B, Wan D, Kuca K (2016) The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 90:1817–1840

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Wang L, Guan J, Tang C, He N, Zhang W, Fu S (2018) Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model. Int J Biol Macromol 117:102–107

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Pan Y, Chen J (2019) Chemical constituents, pharmacologic properties, and clinical applications of Bletilla striata. Front Pharmacol 10:1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HL, Hseu YC, Chen JY, Yech YJ, Lu FJ, Wang HH, Lint PS, Wang BC (2006) Antrodia camphorata in submerged culture protects low density lipoproteins against oxidative modification. Am J Chin Med 34:217–231

    Article  PubMed  Google Scholar 

  • Yang JY, Singh D, Singh D, Lee EM, Choi S, Han SS, Park SJ (2014) Terminalia bellirica extracts loaded on stimuli responsive HEMA-DEA hydrogel for enhanced growth and proliferation of mesenchymal stem cells. J Biomater Tissue Eng 4:37–45

    Article  CAS  Google Scholar 

  • Yang SB, Kim EH, Kim SH, Kim YH, Oh W, Lee J-T, Jang Y-A, Sabina Y, Ji BC, Yeum JH (2018) Electrospinning fabrication of poly(vinyl alcohol)/coptis chinensis extract nanofibers for antimicrobial exploits. Nanomaterials 8:734

    Article  PubMed  PubMed Central  Google Scholar 

  • Yazarlu O, Iranshahi M, Kashani HRK, Reshadat S, Habtemariam S, Iranshahy M, Hasanpour M (2021) Perspective on the application of medicinal plants and natural products in wound healing: a mechanistic review. Pharmacol Res 174:105841

    Article  CAS  PubMed  Google Scholar 

  • Yousefi I, Pakravan M, Rahimi H, Bahador A, Farshadzadeh Z, Haririan I (2017) An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Mater Sci Eng C Mater Biol Appl 75:433–444

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhao X (2020) Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol 162:1414–1428

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Qi C, Wang H, Xiao X, Zhuang Y, Gu S, Zhou Y, Wang L, Yang H, Xu W (2019) Biocompatible and degradable Bletilla striata polysaccharide hemostasis sponges constructed from natural medicinal herb Bletilla striata. Carbohydr Polym 226:115304

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Liu Y, Qin D, Sun M, Wang T, Chen X (2020) Research status of self-healing hydrogel for wound management: a review. Int J Biol Macromol 164:2108–2123

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Deneau J, Che GOL, Li S, Vagnini F, Azadi P, Sonon R, Ramjit R, Lee SMY, Bojanowski K (2012) Angelica sinensis isolate SBD.4: composition, gene expression profiling, mechanism of action and effect on wounds, in rats and humans. Eur J Dermatol 22:58–67

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Pi W, Cheng S, Gu Z, Zhang K, Min T, Zhang W, Du H, Zhang P, Wen Y (2021) Multifunctional DNA hydrogels with hydrocolloid-cotton structure for regeneration of diabetic infectious wounds. Adv Funct Mater 31:2106167

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (82103893, 82073606), the Key R&D and Promotion Projects in Henan Province (212102310181, 212102310337), Zhongyuan Thousand Talents Project (204200510013) and the Discipline Innovation and Wisdom Introduction Plan of Higher Education in Henan Province (CXJD2021002).

Author information

Authors and Affiliations

Authors

Contributions

Writing-original draft, Conceptualization, Resources, LD; Conceptualization, Funding acquisition, Writing-review & editing, LH; Resources, Writing-original draft, YW and XZ; Resources, HM and YL; Supervision; Funding acquisition, Writing-review & editing, FG; Conceptualization, Writing-review & editing, Funding acquisition, Project administration, YX.

Corresponding authors

Correspondence to Fangxia Guan or Yamin Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., He, L., Wang, Y. et al. Research progress and challenges of composite wound dressings containing plant extracts. Cellulose 30, 11297–11322 (2023). https://doi.org/10.1007/s10570-023-05602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05602-0

Keywords

Navigation