Skip to main content
Log in

A comprehensive review on the mechanical, physical, and thermal properties of abaca fibre for their introduction into structural polymer composites

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Abaca is a strong competitor among natural fibres for use as the reinforcement of polymer composites. Due to its high durability, considerable fibre length, flexibility and mechanical strength, abaca shows good potential as a renewable source of fibres for application in technological and industrial fields. Discussing the influence of various treatment strategies, such as alkali and silane, for the preparation of abaca-based composites results in the improvement of their properties over that of bare polymer materials and that of other synthetic fibres. The enhanced characteristics of abaca fibre reinforced composites are widely explored for a variety of applications in automotive and other industries. These include for example roping and woven fabrics, currency notes, cigarette filter papers, vacuum bags, tea bags, cellulose pulp for paper and packaging, and materials for automotive components, etc. In particular, the effective use of abaca fibre reinforced polymer composite in manufacturing external parts of cars, using therefore also thermoplastic matrices, has become popular. The gaps in research from the literature that show the scarcity of studies on topics such as simulation and designing of mechanical characteristics of abaca fibre composites constructed on polymer matrices, such as epoxy, polylactide, high density polyethylene, phenol formaldehyde and polyester are also highlighted. The results indicate that abaca is particularly flexible to be used in different sectors, in combination with various matrices, and in hybrid composites with various fibres. Further work would necessarily involve the larger consideration of abaca textiles with different areal weights in the production of composites, and a widespread introduction of abaca in datasets for the automated selection of natural fibres for composites reinforcement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HDPE:

High density polyethylene

MAPP:

Maleic anhydride grafted polypropylene

NaOH:

Sodium hydroxide

NFCs:

Natural fibre composites

PE:

Polyethylene

PLA:

Poly (lactic acid)

PP:

Polypropylene

TGA:

Thermogravimetric analysis

References

  • Adeniyi AG, Onifade DV, Ighalo JO, Adeoye AS (2019) A review of coir fiber reinforced polymer composites. Compos B Eng 176:107305

    Article  CAS  Google Scholar 

  • Adesina A (2022) The effect of modified natural fibers on the mechanical properties of cementitious composites. In: Advances in bio-based fiber, pp 661–673. Woodhead Publishing

  • Agung EH, Sapuan SM, Hamdan MM, Zaman H, Mustofa U (2011) Study on Abaca (Musa textilis Nee) fibre reinforced high impact polystyrene (HIPS) composites by thermogravimetric analysis (TGA). Int J Phys Sci 6(8):2100–2106

    CAS  Google Scholar 

  • Ahmad F, Choi HS, Park MK (2015). A review : natural fiber composites selection in view of mechanical, light weight, and economic properties, pp 10–24

  • Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259

    Article  CAS  Google Scholar 

  • Al-Oqla FM (2023) Manufacturing and delamination factor optimization of cellulosic paper/epoxy composites towards proper design for sustainability. Int J Interact Des Manuf 17(2):765–773

    Article  Google Scholar 

  • Al-Oqla FM, Hayajneh MT (2021) A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. Int J Sustain Eng 14(5):1043–1048

    Article  Google Scholar 

  • Al-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015a) Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Comput Electron Agric 113:116–127

    Article  Google Scholar 

  • Al-Oqla FM, Salit MS, Ishak MR, Aziz NA (2015b) A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. BioResources. https://doi.org/10.15376/biores.10.1.299-312

  • Al-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2016) A decision-making model for selecting the most appropriate natural fiber–polypropylene-based composites for automotive applications. J Compos Mater 50(4):543–556

    Article  Google Scholar 

  • Al-Oqla F, Alaaeddin M, El-Shekeil Y (2021) Thermal stability and performance trends of sustainable lignocellulosic olive/low density polyethylene biocomposites for better environmental green materials. Eng Solid Mech 9(4):439–448

    Article  Google Scholar 

  • Al-Oqla FM, Hayajneh MT, Al-Shrida MAM (2022a) Mechanical performance, thermal stability and morphological analysis of date palm fiber reinforced polypropylene composites toward functional bio-products. Cellulose 29(6):3293–3309

    Article  CAS  Google Scholar 

  • Al-Oqla FM, Alaaeddin MH, Hoque ME, Thakur VK (2022b) Biopolymers and biomimetic materials in medical and electronic-related applications for environment–health–development nexus: systematic review. J Bionic Eng 19(6):1562–1577

    Article  Google Scholar 

  • Al-Oqla FM, Hayajneh MT, Nawafleh N (2023a) Advanced synthetic and biobased composite materials in sustainable applications: a comprehensive review. Emergent Mater. https://doi.org/10.1007/s42247-023-00478-z

    Article  Google Scholar 

  • Al-Oqla FM, Hayajneh MT, Hoque ME (2023b) Structural integrity and performance investigations of a novel chemically treated cellulosic paper corn/polyester sustainable biocomposites. Funct Compos Struct 5(1):015007

    Article  Google Scholar 

  • Alshammari BA, Alotaibi MD, Alothman OY, Sanjay MR, Kian LK, Almutairi Z, Jawaid M (2019) A new study on characterization and properties of natural fibers obtained from olive tree (Olea europaea L.) residues. J Polym Environ 27:2334–2340

    Article  CAS  Google Scholar 

  • Amir N, Abidin KAZ, Shiri FBM (2017) Effects of fibre configuration on mechanical properties of banana fibre/PP/MAPP natural fibre reinforced polymer composite. Procedia Eng 184:573–580

    Article  CAS  Google Scholar 

  • Amuthakkannan P, Manikandan V, Jappes JTW, Uthayakumar M (2013) Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites. Mater Phys Mech 16(2):107–117

    CAS  Google Scholar 

  • Arao Y, Fujiura T, Itani S, Tanaka T (2015) Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos B Eng 68:200–206

    Article  CAS  Google Scholar 

  • Araya-Gutiérrez D, Monge GG, Jiménez-Quesada K, Arias-Aguilar D, Cordero RQ (2023) Abaca: a general review on its characteristics, productivity, and market in the world. Revista Facultad Nacional De Agronomía Medellín 76(1):10263–10273

    Google Scholar 

  • Arif ZU, Khalid MY, Sheikh MF, Zolfagharian A, Bodaghi M (2022) Biopolymeric sustainable materials and their emerging applications. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.108159

    Article  Google Scholar 

  • Ariffin A, Ahmad MSB (2011) Single Screw extruder in particulate filler composite. Polym-Plast Technol Eng 50(4):395–403

    Article  CAS  Google Scholar 

  • Arju SN, Afsar AM, Das DK, Khan MA (2014) Role of reactive dye and chemicals on mechanical properties of jute fabrics polypropylene composites. Procedia Eng 90:199–205

    Article  CAS  Google Scholar 

  • Armecin RB, Coseco WC (2012) Abaca (Musa textilis Nee) allometry for above-ground biomass and fiber production. Biomass Bioenerg 46:181–189

    Article  Google Scholar 

  • Armecin RB, Seco MHP, Caintic PS, Milleza EJM (2005) Effect of leguminous cover crops on the growth and yield of abaca (Musa textilis Nee). Ind Crops Prod 21(3):317–323

    Article  Google Scholar 

  • Asim M, Paridah MT, Chandrasekar M, Shahroze RM, Jawaid M, Nasir M, Siakeng R (2020) Thermal stability of natural fibers and their polymer composites. Iran Polym J 29(7):625–648

    Article  CAS  Google Scholar 

  • Bacarra-Tablante E, Sabusap A (2021) Development of a pedal-operated abaca stripping tool. J Sci Eng Technol JSET 9:61–68

    Google Scholar 

  • Badyankal PV, Manjunatha TS, Vaggar GB, Praveen KC (2021) Compression and water absorption behaviour of banana and sisal hybrid fiber polymer composites. Mater Today Proceed 35:383–386

    Article  CAS  Google Scholar 

  • Bajracharya RM, Manalo AC, Karunasena W, Lau K (2014) An overview of mechanical properties and durability of glass-fibre reinforced recycled mixed plastic waste composites. Mater Des 1980–2015(62):98–112

    Article  Google Scholar 

  • Balan GS, Ravichandran M (2020) Study of moisture absorption characteristics of jute fiber reinforced waste plastic filled polymer composite. Mater Today Proceed 27:712–717

    Article  CAS  Google Scholar 

  • Banjare J, Sahu YK, Agrawal A, Satapathy A (2014) Physical and thermal characterization of red mud reinforced epoxy composites: an experimental investigation. Procedia Mater Sci 5:755–763

    Article  CAS  Google Scholar 

  • Barba BJD, Madrid JF, Penaloza DP Jr (2020) A review of abaca fiber-reinforced polymer composites: different modes of preparation and their applications. J Chil Chem Soc 65(3):4919–4924

    Article  CAS  Google Scholar 

  • Bisaria H, Gupta MK, Al-Shandilya P, Srivastava RK (2015) Effect of fibre length on mechanical properties of randomly oriented short jute fibre reinforced epoxy composite. Mater Today Proceed 2(4–5):1193–1199

    Article  CAS  Google Scholar 

  • Biswas S, Satapathy A (2009) Tribo-performance analysis of Red Mud filled glass-epoxy composites using Taguchi experimental design. Mater Des 30(8):2841–2853

    Article  CAS  Google Scholar 

  • Biswas S, Satapathy A (2010) A comparative study on erosion characteristics of red mud filled bamboo-epoxy and glass-epoxy composites. Mater Des 31(4):1752–1767

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  • Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres–a comparative study to pp. Compos Sci Technol 70(12):1687–1696

    Article  CAS  Google Scholar 

  • Bledzki AK, Faruk O, Mamun AA (2008) Influence of compounding processes and fibre length on the mechanical properties of abaca fibre-polypropylene composites. Polimery 53(2):120–125

    Article  CAS  Google Scholar 

  • Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos A Appl Sci Manuf 40(4):404–412

    Article  Google Scholar 

  • Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K (2010) Polypropylene composites with enzyme modified abaca fibre. Compos Sci Technol 70(5):854–860

    Article  CAS  Google Scholar 

  • Boopalan M, Niranjanaa M, Umapathy MJ (2013) Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos B Eng 51:54–57

    Article  CAS  Google Scholar 

  • Bourmaud A, Beaugrand J, Shah DU, Placet V, Baley C (2018) Towards the design of high-performance plant fibre composites. Prog Mater Sci 97:347–408

    Article  Google Scholar 

  • Cai M, Takagi H, Nakagaito AN, Katoh M, Ueki T, Waterhouse GIN, Li Y (2015) Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind Crops Prod 65:27–35

    Article  CAS  Google Scholar 

  • Cai M, Takagi H, Nakagaito AN, Li Y, Waterhouse GIN (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos A Appl Sci Manuf 90:589–597

    Article  CAS  Google Scholar 

  • Custodio CL, Yang X, Wilsby AE, Waller VF, Aquino RR, Tayo LL, Berglund LA (2020). Effect of a chemical treatment series on the structure and mechanical properties of abaca fiber (Musa textilis). In: Materials science forum. Trans Tech Publications Ltd. vol 1015, pp 64–69

  • del Río JC, Rodríguez IM, Gutierrez A (2004) Identification of intact long-chain P-hydroxycinnamate Esters in leaf fibers of abaca (Musa textilis) using gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 18(22):2691–2696

    Article  PubMed  Google Scholar 

  • Del Río JC, Marques G, Rencoret J, Martínez ÁT, Gutiérrez A (2007) Occurrence of naturally acetylated lignin units. J Agric Food Chem 55(14):5461–5468

    Article  PubMed  Google Scholar 

  • Delicano JA (2018) A review on abaca fiber reinforced composites. Compos Interfaces 25(12):1039–1066

    Article  Google Scholar 

  • Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos A Appl Sci Manuf 56:280–289

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L (2001) Current international research into cellulosic fibres and composites. J Mater Sci 36(9):2107–2131

    Article  CAS  Google Scholar 

  • Fan M, Naughton A (2016) Mechanisms of thermal decomposition of natural fibre composites. Compos B Eng 88:1–10

    Article  CAS  Google Scholar 

  • Fares O, Al-Oqla F, Hayajneh M (2022) Revealing the intrinsic dielectric properties of mediterranean green fiber composites for sustainable functional products. J Indus Text 51(5_suppl):7732S-7754S

    Article  CAS  Google Scholar 

  • Ferreira JAM, Capela C, Costa JD (2010) A study of the mechanical properties of natural fibre reinforced composites. Fibers Polym 11(8):1181–1186

    Article  CAS  Google Scholar 

  • Fuqua MA, Huo S, Ulven CA (2012) Natural fiber reinforced composites. Polym Rev 52(3):259–320

    Article  CAS  Google Scholar 

  • Gallos A, Paës G, Allais F, Beaugrand J (2017) Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites. RSC Adv 7(55):34638–34654

    Article  CAS  Google Scholar 

  • George G, Jose ET, Jayanarayanan K, Nagarajan ER, Skrifvars M, Joseph K (2012) Novel bio-commingled composites based on jute/polypropylene yarns: effect of chemical treatments on the mechanical properties. Compos A Appl Sci Manuf 43(1):219–230

    Article  Google Scholar 

  • Gironès J, Lopez JP, Vilaseca F, Herrera-Franco PJ, Mutje P (2011) Biocomposites from Musa textilis and polypropylene: evaluation of flexural properties and impact strength. Compos Sci Technol 71(2):122–128

    Article  Google Scholar 

  • Goriparthi BK, Suman KNS, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos A Appl Sci Manuf 43(10):1800–1808

    Article  CAS  Google Scholar 

  • Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25

    Article  CAS  Google Scholar 

  • Hayajneh MT, Al-Shrida MAM, Al-Oqla FM (2022) Mechanical, thermal, and tribological characterization of bio-polymeric composites: a comprehensive review. e-Polymers 22(1):641–663

    Article  CAS  Google Scholar 

  • He J, Jie Y, Zhang J, Yu Y, Zhang G (2013) Synthesis and characterization of Red Mud and rice husk ash-based geopolymer composites. Cement Concr Compos 37:108–118

    Article  CAS  Google Scholar 

  • Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. Jom 58(11):80–86

    Article  CAS  Google Scholar 

  • Ibrahim ID, Jamiru T, Sadiku RE, Kupolati WK, Agwuncha SC (2017) Dependency of the mechanical properties of sisal fiber reinforced recycled polypropylene composites on fiber surface treatment, fiber content and nanoclay. J Polym Environ 25(2):427–434

    Article  CAS  Google Scholar 

  • Indira KN, Jyotishkumar P, Thomas S (2012) Thermal stability and degradation of banana fibre/PF composites fabricated by RTM. Fibers Polym 13(10):1319–1325

    Article  CAS  Google Scholar 

  • Iucolano F, Caputo D, Leboffe F, Liguori B (2015) Mechanical behavior of plaster reinforced with abaca fibers. Constr Build Mater 99:184–191

    Article  Google Scholar 

  • Janicki G, Bailey V, Schjelderup H (1990) International SAMPE symposium and exhibition. In: 35th, Anaheim, CA, Apr. 2–5, 1990, Proceedings. Books 1 2. Covina, CA (US); Society for the Advancement of Material and Process Engineering

  • Jiménez L, Ramos E, De la Torre MJ, Pérez I, Ferrer JL (2008) Bleaching of soda pulp of fibres of Musa textilis Nee (abaca) with peracetic acid. Biores Technol 99(5):1474–1480

    Article  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207

    Article  CAS  Google Scholar 

  • Joseph K, Varghese S, Kalaprasad G, Thomas S, Prasannakumari L, Koshy P, Pavithran C (1996) Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites. Eur Polymer J 32(10):1243–1250

    Article  CAS  Google Scholar 

  • Joseph S, Sreekala MS, Thomas S (2008) Effect of chemical modifications on the thermal stability and degradation of banana fiber and banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 110(4):2305–2314

    Article  CAS  Google Scholar 

  • Kabir MM, Wang H, Aravinthan T, Cardona F, Lau KT (2011) Effects of natural fibre surface on composite properties: a review. In: Proceedings of the 1st international postgraduate conference on engineering, designing and developing the built environment for sustainable wellbeing (EddBE2011), 94–99. Queensland University of Technology

  • Kalia S, Kaith BS, Kaur I (2011) Cellulose fibers: bio-and nano-polymer composites: green chemistry and technology. Springer Science & Business Media

  • Karaduman Y, Sayeed MMA, Onal L, Rawal A (2014) Viscoelastic properties of surface modified jute fiber/polypropylene nonwoven composites. Compos B Eng 67:111–118

    Article  CAS  Google Scholar 

  • Khalid MY, Al Rashid A, Arif ZU, Ahmed W, Arshad H, Zaidi AA (2021a) Natural fiber reinforced composites: sustainable materials for emerging applications. Results Eng 11:100263

    Article  CAS  Google Scholar 

  • Khalid MY, Arif ZU, Sheikh MF, Nasir MA (2021b) Mechanical characterization of glass and jute fiber-based hybrid composites fabricated through compression molding technique. IntJ Mater Form 14(5):1085–1095

    Article  Google Scholar 

  • Khalid MY, Rashid AA, Arif ZU, Ahmed W, Arshad H (2021c) Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. J Market Res 14:2601–2623

    CAS  Google Scholar 

  • Khalid MY, Imran R, Arif ZU, Akram N, Arshad H, Al Rashid A, GarcíaMárquez FP (2021d) Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings 11(3):293

    Article  CAS  Google Scholar 

  • Khalid MY, Al Rashid A, Arif ZU, Sheikh MF, Arshad H, Nasir MA (2021e) Tensile strength evaluation of glass/jute fibers reinforced composites: an experimental and numerical approach. Results Eng 10:100232

    Article  CAS  Google Scholar 

  • Khalid MY, Rashid AA, Abbas Z, Akram N, Arif ZU, Márquez FPG (2021f) Evaluation of tensile properties of glass/sisal and glass/jute fibers reinforced hybrid composites at different stacking sequences. Polymer Korea 45(3):390–397

    Article  CAS  Google Scholar 

  • Khalid MY, Arif ZU, Al Rashid A, Shahid MI, Ahmed W, Tariq AF, Abbas Z (2021g) Interlaminar shear strength (ILSS) characterization of fiber metal laminates (FMLs) manufactured through VARTM process. Forces Mech 4:100038

    Article  Google Scholar 

  • Khalil HPSA, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    Article  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873

    Article  Google Scholar 

  • Kumar SMS, Duraibabu D, Subramanian K (2014) Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Mater Des 59:63–69

    Article  Google Scholar 

  • Kumar AM, Parameshwaran R, Kumar PS, Pal SK, Prasath MM, Krishnaraj V, Rajasekar R (2017) Effects of abaca fiber reinforcement on the dynamic mechanical behavior of vinyl ester composites. Materials Testing 59(6):555–562

    Article  CAS  Google Scholar 

  • Kumar BP, Venkataramaiah P, Ganesh JS (2019a) Optimization of process parameters in injection moulding of a polymer composite product by using Gra. Materials Today: Proceedings 18:4637–4647

    Google Scholar 

  • Kumar R, UlHaq MI, Raina A, Anand A (2019b) Industrial applications of natural fibre-reinforced polymer composites-challenges and opportunities. Int J Sustain Eng 12(3):212–220

    Article  Google Scholar 

  • Kurien RA, Santhosh A, Paul D, Kurup GB, Reji GS (2020a) A review on recent developments in kenaf, sisal, pineapple, bamboo and banana fiber-reinforced composites. In: International conference on advances in materials processing & manufacturing applications, pp 301–310. Springer, Singapore

  • Kurien RA, Santhosh A, Paul D, Kurup GB, Reji GS, Selvaraj DP (2020b) A study on recent developments in jute, cotton, coir, silk and abaca fiber-reinforced composites. In: International conference on advances in materials processing & manufacturing applications, pp 375–384. Springer, Singapore

  • Kurien RA, Selvaraj DP, Sekar M, Koshy CP (2020c) Green composite materials for green technology in the automotive industry. In: IOP conference series: materials science and engineering, 872:012064. IOP Publishing

  • Kurien RA, Selvaraj DP, Koshy CP (2021a) Worn surface morphological characterization of NaOH-treated chopped abaca fiber reinforced epoxy composites. J Bio Tribo Corros 7(1):1–8

    Article  Google Scholar 

  • Kurien RA, Selvaraj DP, Sekar M, Koshy CP, Praveen KM (2021b) Comparative mechanical, tribological and morphological properties of epoxy resin composites reinforced with multi-walled carbon nanotubes. Arabian J Sci Eng. https://doi.org/10.1007/s13369-021-05984-y

  • Kurien RA, Selvaraj DP, Sekar M, Koshy CP, Tijo D (2021c) Mechanical characterization and evaluation of NaOH treated chopped abaca fiber reinforced epoxy composites. In: Materials Science Forum. Trans Tech Publ. 1019:12–18

  • Kurien RA, Selvaraj DP, Sekar M, Rajasekar R, Koshy CP (2021d) Experimental investigation on tribological characteristics of NaOH treated chopped abaca fiber reinforced epoxy composites. In: Materials Science Forum. Trans Tech Publ. 1019:25–31.

  • Lacuna-Richman C (2002) The role of abaca (Musa textilis) in the household economy of a forest village. Small-Scale For Econ Manag Policy 1(1):93–101

    Article  Google Scholar 

  • Lalusin AG, Villavicencio MLH (2015) Abaca (Musa textilis Nee) breeding in the Philippines. Indus Crops Breed BioEnergy Bioproducts. https://doi.org/10.1007/978-1-4939-1447-0_12

    Article  Google Scholar 

  • Lau K, Hung P, Zhu M-H, Hui D (2018) Properties of natural fibre composites for structural engineering applications. Compos B Eng 136:222–233

    Article  CAS  Google Scholar 

  • Lee DW, Kim S, Kim BS, Song JJ (2013) Tensile and fire retardant properties of nanoclay reinforced Abaca/Polypropylene composite. In: 2013 international conference on aerospace science & engineering (ICASE), pp 1–5. IEEE

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Article  Google Scholar 

  • Liu B, Bickerton S, Advani SG (1996) Modelling and simulation of resin transfer moulding (RTM)—gate control, venting and dry spot prediction. Compos A Appl Sci Manuf 27(2):135–141

    Article  Google Scholar 

  • Liu K, Takagi H, Osugi R, Yang Z (2012) Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Compos A Appl Sci Manuf 43(8):1234–1241

    Article  CAS  Google Scholar 

  • Liu K, Takagi H, Yang Z (2013) Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem. Compos A Appl Sci Manuf 45:14–22

    Article  CAS  Google Scholar 

  • Liu K, Yang Z, Takagi H (2014a) Anisotropic thermal conductivity of unidirectional natural abaca fiber composites as a function of lumen and cell wall structure. Compos Struct 108:987–991

    Article  Google Scholar 

  • Liu K, Zhang X, Takagi H, Yang Z, Wang D (2014b) Effect of chemical treatments on transverse thermal conductivity of unidirectional abaca fiber/epoxy composite. Compos A Appl Sci Manuf 66:227–236

    Article  CAS  Google Scholar 

  • Liu Y, Ma Y, Yu J, Zhuang J, Wu S, Tong J (2019) Development and characterization of alkali treated abaca fiber reinforced friction composites. Compos Interfaces 26(1):67–82

    Article  CAS  Google Scholar 

  • Lu T, Liu S, Jiang M, Xu X, Wang Y, Wang Z, Gou J, Hui D, Zhou Z (2014) Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites. Compos B Eng 62:191–197

    Article  CAS  Google Scholar 

  • Mahjoub R, Yatim JM, Sam ARM, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103–113

    Article  Google Scholar 

  • Malenab RAJ, Ngo JPS, Promentilla MAB (2017) Chemical treatment of waste abaca for natural fiber-reinforced geopolymer composite. Materials 10(6):579

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamun AA, Heim HP, Faruk O, Bledzki AK (2015) The use of banana and abaca fibres as reinforcements in composites. In: Biofiber reinforcements in composite materials. Woodhead Publishing. pp 236–272

  • Milosevic M, Dzunic D, Valasek P, Mitrovic S, Ruggiero A (2022) Effect of fiber orientation on the tribological performance of abaca-reinforced epoxy composite under dry contact conditions. J Compos Sci 6(7):204

    Article  CAS  Google Scholar 

  • Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci. https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  • Monette L, Anderson MP, Grest GS (1993) The meaning of the critical length concept in composites: study of matrix viscosity and strain rate on the average fiber fragmentation length in short-fiber polymer composites. Polym Compos 14(2):101–115

    Article  CAS  Google Scholar 

  • Monteiro SN, Satyanarayana KG, Ferreira AS, Nascimento DCO, Lopes FPD, Silva ILA, Bevitori AB, Inácio WP, Bravo Neto J, Portela TG (2010) Selection of high strength natural fibers. Matéria 15(4):488–505

    Google Scholar 

  • Mussig J, Fisher H, Graupner N, Frrieling A (2010) Testing methods for measuring physical and mechanical fibre properties (plant and animal fibres). Ind Appl Nat Fibres Struct Prop Tech Appl. 269–309

  • Ngo JPS, Promentilla MAB (2018) Development of abaca fiber-reinforced foamed fly ash geopolymer. In: MATEC web of conferences. EDP Sciences, 2018. p 05018

  • Niranjan RR, Junaid Kokan S, Sathya Narayanan R, Rajesh S, Manickavasagam VM, Ramnath BV (2013) Fabrication and testing of abaca fibre reinforced epoxy composites for automotive applications. In: Advanced Materials Research. Trans Tech Publ. 718:63–68

  • Nirmal U, Hashim J, Ahmad MMHM (2015) A review on tribological performance of natural fibre polymeric composites. Tribol Int 83:77–104

    Article  CAS  Google Scholar 

  • Ochi S (2006) Development of high strength biodegradable composites using manila hemp fiber and starch-based biodegradable resin. Compos A Appl Sci Manuf 37(11):1879–1883

    Article  Google Scholar 

  • Paglicawan MA, Kim BS, Basilia BA, Emolaga CS, Marasigan DD, Maglalang PEC (2014) Plasma-treated abaca fabric/unsaturated polyester composite fabricated by vacuum-assisted resin transfer molding. Int J Precis Eng Manuf Green Technol 1(3):241–246

    Article  Google Scholar 

  • Paglicawan MA, Rodriguez MP, Celorico JR (2020) Thermomechanical properties of woven abaca fiber‐reinforced nanocomposites. Polym Compos 41(5):1763–1773

    Article  CAS  Google Scholar 

  • Punyamurthy R, Sampathkumar D, Bennehalli B, Patel R, Venkateshappa SC (2014) Abaca fiber reinforced epoxy composites: evaluation of impact strength. Int J Sci Basic Appl Res 18:305–317

    Google Scholar 

  • Punyamurthy R, Sampathkumar D, Ranganagowda RPG, Bennehalli B, Srinivasa CV (2017) Mechanical properties of abaca fiber reinforced polypropylene composites: effect of chemical treatment by benzenediazonium chloride. J King Saud Univ Eng Sci 29(3):289–294

    Google Scholar 

  • Rahman MR, Huque MM, Islam MN, Hasan M (2009) Mechanical properties of polypropylene composites reinforced with chemically treated abaca. Compos AAppl Sci Manuf 40(4):511–517

    Article  Google Scholar 

  • Ramadevi P, Sampathkumar D, Srinivasa CV, Bennehalli B (2012) Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources 7(3):3515–3524

    Article  Google Scholar 

  • Ramesh M, Nijanthan S (2016) Mechanical property analysis of kenaf-glass fibre reinforced polymer composites using finite element analysis. Bull Mater Sci 39(1):147–157

    Article  CAS  Google Scholar 

  • Ramnath BV, Kokan SJ, Raja RN, Sathyanarayanan R, Elanchezhian C, Prasad AR, Manickavasagam VM (2013) Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater Des 51:357–366

    Article  Google Scholar 

  • Ramnath BV, Manickavasagam VM, Elanchezhian C, Krishna CV, Karthik S, Saravanan K (2014) Determination of mechanical properties of intra-layer abaca–jute–glass fiber reinforced composite. Mater Des 60:643–652

    Article  Google Scholar 

  • Ray D, Sarkar BK, Rana AK, Bose NR (2001) The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Compos A Appl Sci Manuf 32(1):119–127

    Article  CAS  Google Scholar 

  • Ray K, Patra H, Swain AK, Parida B, Mahapatra S, Sahu A, Rana S (2020) Glass/jute/sisal fiber reinforced hybrid polypropylene polymer composites: fabrication and analysis of mechanical and water absorption properties. Materials Today: Proceedings 33:5273–5278

    CAS  Google Scholar 

  • Retnam B, Sivapragash M, Pradeep P (2014) Effects of fibre orientation on mechanical properties of hybrid bamboo/glass fibre polymer composites. Bull Mater Sci 37(5):1059–1064

    Article  CAS  Google Scholar 

  • Richter S, Stromann K, Müssig J (2013) Abacá (Musa textilis) grades and their properties—a study of reproducible fibre characterization and a critical evaluation of existing grading systems. Ind Crops Prod 42:601–612

    Article  Google Scholar 

  • Robertson FC (1988) Resin transfer moulding of aerospace resins—a review. Br Polym J 20(5):417–429

    Article  CAS  Google Scholar 

  • Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater 76:87–96

    Article  Google Scholar 

  • Sallih N, Lescher P, Bhattacharyya D (2014) Factorial study of material and process parameters on the mechanical properties of extruded kenaf fibre/polypropylene composite sheets. Compos A Appl Sci Manuf 61:91–107

    Article  CAS  Google Scholar 

  • Sanjay MR, Arpitha GR, Yogesha B (2015) Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: a review. Mater Today Proceed 2(4–5):2959–2967

    Article  CAS  Google Scholar 

  • Santulli C, Palanisamy S, Kalimuthu M (2022) Pineapple fibers, their composites and applications. In: Plant Fibers, their Composites, and Applications. Woodhead Publishing, pp 323–346

  • Saragih SW, Wirjosentono B, Meliana Y (2020) Thermal and morphological properties of cellulose nanofiber from pseudo-stem fiber of abaca (Musa textilis). Macromolecular Symposia 391(1):2000020

    Article  CAS  Google Scholar 

  • Seculi F, Espinach FX, Julián F, Delgado-Aguilar M, Mutjé P, Tarrés Q (2022) Evaluation of the strength of the interface for abaca fiber reinforced HDPE and Bio-PE composite materials, and its influence over tensile properties. Polymers 14(24):5412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki Y (2009) Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Mater Sci Eng A 508(1–2):247–252

    Article  Google Scholar 

  • Shahri W, Tahir I, Ahad B (2014) Abaca fiber: a renewable bio-resource for industrial uses and other applications. Biomass Bioenergy Process Propert. https://doi.org/10.1007/978-3-319-07641-6_3

    Article  Google Scholar 

  • Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24

    Article  CAS  Google Scholar 

  • Shalwan A, Yousif BF (2014) Influence of date palm fibre and graphite filler on mechanical and wear characteristics of epoxy composites. Mater Des 59:264–273

    Article  CAS  Google Scholar 

  • Shibata M, Takachiyo K, Ozawa K, Yosomiya R, Takeishi H (2002) Biodegradable polyester composites reinforced with short abaca fiber. J Appl Polym Sci 85(1):129–138

    Article  CAS  Google Scholar 

  • Shubhra QTH, Alam A, Quaiyyum MA (2013) Mechanical properties of polypropylene composites: a review. J Thermoplast Compos Mater 26(3):362–391

    Article  Google Scholar 

  • Singha AS, Thakur VK (2008) Mechanical properties of natural fibre reinforced polymer composites. Bull Mater Sci 31(5):791–799

    Article  CAS  Google Scholar 

  • Sinha AK, Narang HK, Bhattacharya S (2017a) Mechanical properties of natural fibre polymer composites. J Polym Eng 37(9):879–895

    Article  CAS  Google Scholar 

  • Sinha AK, Narang HK, Bhattacharya S (2017b) Effect of alkali treatment on surface morphology of abaca fibre. Mater Today Proceed 4(8):8993–8996

    Article  Google Scholar 

  • Sinha AK, Narang HK, Bhattacharya S (2018) Evaluation of bending strength of abaca reinforced polymer composites. Mater Today Proceed 5(2):7284–7288

    Article  Google Scholar 

  • Sinha AK, Bhattacharya S, Narang HK (2019) Experimental determination and modelling of the mechanical properties of hybrid abaca-reinforced polymer composite using RSM. Polym Polym Compos 27(9):597–608

    CAS  Google Scholar 

  • Sinha AK, Narang HK, Bhattacharya S (2020a) Mechanical properties of hybrid polymer composites: a review. J Braz Soc Mech Sci Eng 42(8):1–13

    Article  Google Scholar 

  • Sinha AK, Narang HK, Bhattacharya S (2020b) Experimental investigation of surface modified abaca fibre. In: Materials science forum. Trans Tech Publ. 978:291–295

  • Sinha AK, Bhattacharya S, Narang HK (2021a) Abaca fibre reinforced polymer composites: a review. J Mater Sci 56(7):4569–4587

    Article  Google Scholar 

  • Sinha AK, Narang HK, Bhattacharya S (2021b) Experimental determination, modelling and prediction of sliding wear of hybrid polymer composites using RSM and fuzzy logic. Arab J Sci Eng 46(3):2071–2082

    Article  Google Scholar 

  • Sood M, Dwivedi G (2018) Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egypt J Pet 27(4):775–783

    Article  Google Scholar 

  • Sreenivasan S, Ibraheem SA, Sulaiman S, Baharudin BHT, MohdAriffin MKA, Abdan K (2014) Evaluation of combined treatments of natural fibers: kenaf, abaca and oil palm fibers using micromechanical and SEM methods. Adv Mater Res 912:1932–1939

    Article  Google Scholar 

  • Srinivasan VS, Boopathy SR, Sangeetha D, Ramnath BV (2014) Evaluation of mechanical and thermal properties of banana-flax based natural fibre composite. Mater Des 60:620–627

    Article  CAS  Google Scholar 

  • Sun R, Fang JM, Goodwin A, Lawther JM, Bolton AJ (1998) Isolation and characterization of polysaccharides from abaca fiber. J Agric Food Chem 46(7):2817–2822

    Article  CAS  Google Scholar 

  • Suvarna AS, Katagi A, Pasanna J, Kumar S, Badyankal PV, Vasudeva SK (2015) Mechanical properties of abaca fiber reinforced urea formaldehyde composites. Mater Sci Res India 12(1):54–59

    Article  Google Scholar 

  • Takagi H, Liu K, Osugi R, Nakagaito AN, Yang Z (2012) Heat barrier properties of green composites. J Biobased Mater Bioenergy 6(4):470–474

    Article  CAS  Google Scholar 

  • Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86(3):401–409

    Article  CAS  Google Scholar 

  • Tumolva T, Kubouchi M, Aoki S, Sakai T (2009) Evaluating the carbon storage potential of furan resin-based green composites. In: Proceedings of the 17th international conference on composite materials, Edinburgh, UK, 27–31

  • Unal F, Avinc O, Yavas A (2020) Sustainable textile designs made from renewable biodegradable sustainable natural abaca fibers. Sustain Text Apparel Indus Sustain Text Cloth Des Repurpos. https://doi.org/10.1007/978-3-030-37929-2_1

    Article  Google Scholar 

  • Uthayakumar M, Manikandan V, Rajini N, Jeyaraj P (2014) Influence of Redmud on the mechanical, damping and chemical resistance properties of banana/polyester hybrid composites. Mater Des 64:270–279

    Article  Google Scholar 

  • Valášek P, Müller M, Šleger V, Kolář V, Hromasová M, D’Amato R, Ruggiero A (2021) Influence of alkali treatment on the microstructure and mechanical properties of coir and abaca fibers. Materials 14(10):2636

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatasubramanian H, Chaithanyan C, Raghuraman S, Panneerselvam T (2014) A study of mechanical properties of abaca-glass-banana fiber reinforced hybrid composites. Int J Adv Res Sci Eng Tech 1(1):40–48

    Google Scholar 

  • Vilaseca F, Valadez-Gonzalez A, Herrera-Franco PJ, Pèlach MÀ, López JP, Mutjé P (2010) Biocomposites from abaca strands and polypropylene. Part I: evaluation of the tensile properties. Bioresour Technol 101(1):387–395

    Article  CAS  PubMed  Google Scholar 

  • Wagenführ A (2017) A lightweight natural fibre composite construction. Lightweight Design Worldwide 10(1):3

    Article  Google Scholar 

  • Wang Y, Chen FB, Li YC, Wu KC (2004) Melt processing of polypropylene/clay nanocomposites modified with maleated polypropylene compatibilizers. Compos B Eng 35(2):111–124

    Article  Google Scholar 

  • Wu C-M, Lai W-Y, Wang C-Y (2016) Effects of surface modification on the mechanical properties of Flax/β-polypropylene composites. Materials 9(5):314

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong X, Shen SZ, Alam N, Hua L, Li X, Wan X, Miao M (2018) Mechanical and abrasive wear performance of woven flax fabric/polyoxymethylene composites. Wear 414:9–20

    Article  Google Scholar 

  • Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2015) Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated composites. Mater Des 67:173–179

    Article  CAS  Google Scholar 

  • Yogeshwaran S, Natrayan L, Udhayakumar G, Godwin G, Yuvaraj L (2021) Effect of waste tyre particles reinforcement on mechanical properties of jute and abaca fiber-epoxy hybrid composites with pre-treatment. Mater Today Proceed 37:1377–1380

    Article  CAS  Google Scholar 

  • Zakikhani P, Zahari R, Sultan MTH, Majid DL (2014) Extraction and preparation of bamboo fibre-reinforced composites. Mater Des 63:820–828

    Article  CAS  Google Scholar 

  • Zakrzewski GA, Mazenko D, Peters ST, Dean CD (1989) Tomorrow’s materials today (No. CONF-890552-). Covina, CA (USA); SAMPE

Download references

Acknowledgments

Authors are thankful to Department of Mechanical Engineering, Saintgits College of Engineering, Kottayam, Kerala, India and Department of Mechanical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India for providing platform for this research.

Funding

This research received funding from Centre for Engineering Research and Development (CERD), APJ Abdul Kalam Technological University (APJAKTU) (KTU/RESEARCH 2/4068/2019).

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions Details Conceptualization, Methodology and Investigation: Rittin Abraham Kurien, D Philip Selvaraj, M Sekar, and Chacko Preno Koshy Writing- Original draft preparation: Rittin Abraham Kurien, Cherian Paul, Sivasubramanian Palanisamy, Praveen Kumar Resources, Review and Editing: Rittin Abraham Kurien, D Philip Selvaraj, M Sekar, Chacko Preno Koshy, Cherian Paul,Sivasubramanian Palanisamy, Carlo Santulli, Praveen Kumar Supervision: D Philip Selvaraj, Carlo Santulli All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Sivasubramanian Palanisamy or Carlo Santulli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurien, R.A., Selvaraj, D.P., Sekar, M. et al. A comprehensive review on the mechanical, physical, and thermal properties of abaca fibre for their introduction into structural polymer composites. Cellulose 30, 8643–8664 (2023). https://doi.org/10.1007/s10570-023-05441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05441-z

Keywords

Navigation