Skip to main content
Log in

Metal-free, visible light-mediated atom transfer radical polymerization of hydroxypropyl cellulose-graft-poly(methyl methacrylate)s: effect of polymer side chains on thermo-responsive behavior of hydroxypropyl cellulose

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We exploited organic photo-redox-catalyzed atom transfer radical polymerization (O-ATRP) to synthesize a thermo-responsive polymer with a narrow molecular weight distribution. Poly(methyl methacrylate) (PMMA) chains were polymerized from a hydroxypropyl cellulose (HPC)-based macroinitiator using metal-free O-ATRP under visible-light irradiation. This O-ATRP is mediated by 1,2,3,5-tetrakis (carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN), a photoredox catalyst with a substantial excited-state reduction potential, low cost, and ease of preparation. The synthesis of a series of PMMA-grafted HPC (PMMA-g-HPC) was characterized by various analytical methods, including FTIR spectroscopy, NMR spectroscopy, TGA, and GPC analysis. The lower critical solution temperature (LCST) of the polymers was determined by measuring the transmittance of the polymer solution as a function of the temperature at various pH values. Consequently, we expanded the LCST window of the HPC-based polymers and generated the opposite pH dependency of the LCST by forming PMMA-g-HPCs. Our “grafting-from” synthetic approach and thermo-responsive polymers, which are controllable in full range of physiological conditions, are promising in a variety of biological, electronics, and biosensor applications, particularly in drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Arredondo J, Woodcock NM, Garcia-Valdez O, Jessop PG, Champagne P, Cunningham MF (2020) Surface modification of cellulose nanocrystals via RAFT polymerization of CO2-responsive monomer-tuning hydrophobicity. Langmuir 36:13989–13997

    Article  CAS  PubMed  Google Scholar 

  • Bagheri M, Pourmirzaei L (2013) Synthesis and characterization of cholesteryl-modified graft copolymer from hydroxypropyl cellulose and its application as nanocarrier. Macromol Res 21:801–808

    Article  CAS  Google Scholar 

  • Bai Y, Zhang Z, Zhang A, Chen L, He C, Zhuang X, Chen X (2012) Novel thermo-and pH-responsive hydroxypropyl cellulose-and poly(l-glutamic acid)-based microgels for oral insulin controlled release. Carbohydr Polym 89:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Chen W, Tang T, He Y (2022) Photothermal enhancement of reduced graphene oxide in hydroxypropyl cellulose for a smart-window application. Sol Energy 245:376–384

    Article  CAS  Google Scholar 

  • Barty-King CH, Chan CLC, Parker RM, Bay MM, Vadrucci R, De Volder M, Vignolini S (2021) Mechanochromic, structurally colored, and edible hydrogels prepared from hydroxypropyl cellulose and gelatin. Adv Mater 33:2102112

    Article  CAS  Google Scholar 

  • Bonetti L, De Nardo L, Farè S (2021) Thermo-responsive methylcellulose hydrogels: from design to applications as smart biomaterials. Tissue Eng Part B Rev 27:486–513

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Wei H, Wu D-Q, Yang B, Chen N, Cheng S-X, Zhang X-Z, Zhuo R-X (2011) Thermo-responsive shell cross-linked PMMA-bP (NIPAAm-co-NAS) micelles for drug delivery. Int J Pharm 420:333–340

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhong M, Johnson JA (2016) Light-controlled radical polymerization: mechanisms, methods, and applications. Chem Rev 116:10167–10211

    Article  CAS  PubMed  Google Scholar 

  • Chiang FB (2016) Temperature-responsive hydroxypropylcellulose based thermochromic material and its smart window application. RSC Adv 6:61449–61453

    Article  Google Scholar 

  • Chun-xiang L, Huai-yu Z, Ming-hua L, Shi-yu F, Jia-jun Z (2009) Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydr Polym 78:432–438

    Article  Google Scholar 

  • Ci J, Kang H, Liu C, He A, Liu R (2017) Thermal sensitivity and protein anti-adsorption of hydroxypropyl cellulose-g-poly(2-(methacryloyloxy) ethyl phosphorylcholine). Carbohydr Polym 157:757–765

    Article  CAS  PubMed  Google Scholar 

  • Cobo I, Li M, Sumerlin BS, Perrier S (2015) Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat Mater 14:143–159

    Article  CAS  PubMed  Google Scholar 

  • de Ávila Gonçalves S, Rodrigues R, Pioli Vieira P (2021) Metal-free organocatalyzed atom transfer radical polymerization: synthesis, applications, and future perspectives. Macromol Rapid Commun 42:2100221

    Article  Google Scholar 

  • Discekici EH, Anastasaki A, Kaminker R, Willenbacher J, Truong NP, Fleischmann C, Oschmann B, Lunn DJ, Read de Alaniz J, Davis TP (2017) Light-mediated atom transfer radical polymerization of semi-fluorinated (meth) acrylates: facile access to functional materials. J Am Chem Soc 139:5939–5945

    Article  CAS  PubMed  Google Scholar 

  • Droguet BE, Liang H-L, Frka-Petesic B, Parker RM, De Volder MF, Baumberg JJ, Vignolini S (2022) Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nat Mater 21:352–358

    Article  CAS  PubMed  Google Scholar 

  • Dupayage L, Nouvel C, Six J-L (2011) Protected versus unprotected dextran macroinitiators for ATRP synthesis of Dex-g-PMMA. J Polym Sci Part A Polym Chem 49:35–46. https://doi.org/10.1002/pola.24409

    Article  CAS  Google Scholar 

  • Garcia-Valdez O, Champagne P, Cunningham MF (2018) Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Prog Polym Sci 76:151–173

    Article  CAS  Google Scholar 

  • Hatton FL, Kedzior SA, Cranston ED, Carlmark A (2017) Grafting-from cellulose nanocrystals via photoinduced Cu-mediated reversible-deactivation radical polymerization. Carbohydr Polym 157:1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Huang C-F, Chen J-K, Tsai T-Y, Hsieh Y-A, Andrew Lin K-Y (2015) Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP. Polymer 72:395–405. https://doi.org/10.1016/j.polymer.2015.02.056

    Article  CAS  Google Scholar 

  • Jana S, Uchman M (2020) Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: an overview of their design, solution properties, surface-chemistries and applications. Prog Polym Sci 106:101252

    Article  CAS  Google Scholar 

  • Jia H, Teng Y, Li N, Li D, Dong Y, Zhang D, Liu Z, Zhao D, Guo X, Di W (2022) Dual stimuli-responsive inks based on orthogonal upconversion three-primary-color luminescence for advanced anticounterfeiting applications. ACS Mater Lett 4:1306–1313

    Article  CAS  Google Scholar 

  • Jin X, Kang H, Liu R, Huang Y (2013) Regulation of the thermal sensitivity of hydroxypropyl cellulose by poly(N-isopropylacryamide) side chains. Carbohydr Polym 95:155–160

    Article  CAS  PubMed  Google Scholar 

  • Kaldéus T, Telaretti Leggieri MR, Cobo Sanchez C, Malmström E (2019) All-aqueous SI-ARGET ATRP from cellulose nanofibrils using hydrophilic and hydrophobic monomers. Biomacromolecules 20:1937–1943

    Article  PubMed  Google Scholar 

  • Kang H, Liu R, Huang Y (2013) Cellulose derivatives and graft copolymers as blocks for functional materials. Polym Int 62:338–344

    Article  CAS  Google Scholar 

  • Kasaai MR (2008) Calculation of viscometric constants, hydrodynamic volume, polymer–solvent interaction parameter, and expansion factor for three polysaccharides with different chain conformations. Carbohydr Res 343:2266–2277

    Article  CAS  PubMed  Google Scholar 

  • Kedzior SA, Zoppe JO, Berry RM, Cranston ED (2019) Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting. Curr Opin Solid State Mater Sci 23:74–91

    Article  CAS  Google Scholar 

  • Ko C-H, Henschel C, Meledam GP, Schroer MA, Müller-Buschbaum P, Laschewsky A, Papadakis CM (2020) Self-assembled micelles from thermoresponsive poly(methyl methacrylate)-b-poly(N-isopropylacrylamide) diblock copolymers in aqueous solution. Macromolecules 54:384–397

    Article  Google Scholar 

  • Lacerda PSS, Barros-Timmons AMMV, Freire CSR, Silvestre AJD, Neto CP (2013) Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromolecules 14:2063–2073. https://doi.org/10.1021/bm400432b

    Article  CAS  PubMed  Google Scholar 

  • Larsson E, Pendergraph SA, Kaldéus T, Malmström E, Carlmark A (2015) Cellulose grafting by photoinduced controlled radical polymerisation. Polym Chem 6:1865–1874

    Article  CAS  Google Scholar 

  • Ma L, Kang H, Liu R, Huang Y (2010) Smart assembly behaviors of hydroxypropylcellulose-graft-poly(4-vinyl pyridine) copolymers in aqueous solution by thermo and pH stimuli. Langmuir 26:18519–18525

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Liu R, Tan J, Wang D, Jin X, Kang H, Wu M, Huang Y (2010) Self-assembly and dual-stimuli sensitivities of hydroxypropylcellulose-graft-poly(N, N-dimethyl aminoethyl methacrylate) copolymers in aqueous solution. Langmuir 26:8697–8703

    Article  CAS  PubMed  Google Scholar 

  • Mahltig B, Jérôme R, Stamm M (2003) The influence of an acid–base-equilibrium on the adsorption behaviour of a weak polyampholyte. J Polym Res 10:219–223

    Article  CAS  Google Scholar 

  • Massoumi B, Jaymand M (2016) Chemical and electrochemical grafting of polythiophene onto poly(methyl methacrylate), and its electrospun nanofibers with gelatin. J Mater Sci: Mater Electron 27:12803–12812

    CAS  Google Scholar 

  • Matyjaszewski K (2018) Advanced materials by atom transfer radical polymerization. Adv Mater 30:1706441

    Article  Google Scholar 

  • Matyjaszewski K, Tsarevsky NV (2014) Macromolecular engineering by atom transfer radical polymerization. J Am Chem Soc 136:6513–6533

    Article  CAS  PubMed  Google Scholar 

  • Miyake GM, Theriot JC (2014) Perylene as an organic photocatalyst for the radical polymerization of functionalized vinyl monomers through oxidative quenching with alkyl bromides and visible light. Macromolecules 47:8255–8261

    Article  CAS  Google Scholar 

  • Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286. https://doi.org/10.1021/la900452a

    Article  CAS  PubMed  Google Scholar 

  • Nada A, Hassan ML (2000) Thermal behavior of cellulose and some cellulose derivatives. Polym Degrad Stab 67:111–115

    Article  CAS  Google Scholar 

  • Oestmark E, Harrisson S, Wooley KL, Malmström EE (2007) Comb polymers prepared by ATRP from hydroxypropyl cellulose. Biomacromolecules 8:1138–1148

    Article  CAS  Google Scholar 

  • Pan X, Fang C, Fantin M, Malhotra N, So WY, Peteanu LA, Isse AA, Gennaro A, Liu P, Matyjaszewski K (2016) Mechanism of photoinduced metal-free atom transfer radical polymerization: experimental and computational studies. J Am Chem Soc 138:2411–2425

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Lee S, Pornnoppadol G, Nam YS, Kim S-H, Kim BJ (2018) Microcapsules containing pH-responsive, fluorescent polymer-integrated MoS2: an effective platform for in situ pH sensing and photothermal heating. ACS Appl Mater Interfaces 10:9023–9031

    Article  CAS  PubMed  Google Scholar 

  • Park SC, Sharma G, Kim J-C (2022) Synthesis of temperature-responsive P(vinyl pyrrolidone-co-methyl methacrylate) micelle for controlled drug release. J Dispers Sci Technol 43:461–470

    Article  CAS  Google Scholar 

  • Parkatzidis K, Wang HS, Truong NP, Anastasaki A (2020) Recent developments and future challenges in controlled radical polymerization: a 2020 update. Chem 6:1575–1588

    Article  CAS  Google Scholar 

  • Porsch C, Hansson S, Nordgren N, Malmström E (2011) Thermo-responsive cellulose-based architectures: tailoring LCST using poly(ethylene glycol) methacrylates. Polym Chem 2:1114–1123

    Article  CAS  Google Scholar 

  • Rahimian K, Wen Y, Oh JK (2015) Redox-responsive cellulose-based thermoresponsive grafted copolymers and in-situ disulfide crosslinked nanogels. Polymer 72:387–394

    Article  CAS  Google Scholar 

  • Rwei S-P, Nguyen T-A (2015) Formation of liquid crystals and behavior of LCST upon addition of xanthan gum (XG) to hydroxypropyl cellulose (HPC) solutions. Cellulose 22:53–61

    Article  CAS  Google Scholar 

  • Saad A, Mills R, Wan H, Ormsbee L, Bhattacharyya D (2020) Thermoresponsive PNIPAm–PMMA-functionalized PVDF membranes with reactive Fe–Pd nanoparticles for PCB degradation. Ind Eng Chem Res 59:16614–16625

    Article  CAS  Google Scholar 

  • Shao P, Wang B, Wang Y, Li J, Zhang Y (2011) The application of thermosensitive nanocarriers in controlled drug delivery. J Nanomater 2011:1–12

    Article  Google Scholar 

  • Sikdar P, Uddin MM, Dip TM, Islam S, Hoque MS, Dhar AK, Wu S (2021) Recent advances in the synthesis of smart hydrogels. Mater Adv 2:4532–4573

    Article  CAS  Google Scholar 

  • Singh VK, Yu C, Badgujar S, Kim Y, Kwon Y, Kim D, Lee J, Akhter T, Thangavel G, Park LS (2018) Highly efficient organic photocatalysts discovered via a computer-aided-design strategy for visible-light-driven atom transfer radical polymerization. Nat Catal 1:794–804

    Article  CAS  Google Scholar 

  • Theriot JC, Lim C-H, Yang H, Ryan MD, Musgrave CB, Miyake GM (2016) Organocatalyzed atom transfer radical polymerization driven by visible light. Science 352:1082–1086

    Article  CAS  PubMed  Google Scholar 

  • Treat NJ, Sprafke H, Kramer JW, Clark PG, Barton BE, Read de Alaniz J, Fors BP, Hawker CJ (2014) Metal-free atom transfer radical polymerization. J Am Chem Soc 136:16096–16101

    Article  CAS  PubMed  Google Scholar 

  • Tu C-W, Tsai F-C, Chang C-J, Yang C-H, Kuo S-W, Zhang J, Chen T, Huang C-F (2019) Surface-initiated initiators for continuous activator regeneration (SI ICAR) ATRP of MMA from 2,2,6,6–tetramethylpiperidine–1–oxy (TEMPO) oxidized cellulose nanofibers for the preparations of PMMA nanocomposites. Polymers 11:1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Zhang X-Z, Zhou Y, Cheng S-X, Zhuo R-X (2006) Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials 27:2028–2034

    Article  CAS  PubMed  Google Scholar 

  • Weißenborn E, Braunschweig B (2019) Hydroxypropyl cellulose as a green polymer for thermo-responsive aqueous foams. Soft Matter 15:2876–2883

    Article  PubMed  PubMed Central  Google Scholar 

  • Wohlhauser S, Delepierre G, Labet M, Gl Morandi, Thielemans W, Weder C, Zoppe JO (2018) Grafting polymers from cellulose nanocrystals: synthesis, properties, and applications. Macromolecules 51:6157–6189

    Article  CAS  Google Scholar 

  • Xu F, Zhu Y, Liu F, Nie J, Ma J, Yang W (2010) Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjug Chem 21:456–464

    Article  CAS  PubMed  Google Scholar 

  • Yi J, Xu Q, Zhang X, Zhang H (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412. https://doi.org/10.1016/j.polymer.2008.08.008

    Article  CAS  Google Scholar 

  • Yuan W, Zhang J, Zou H, Shen T, Ren J (2012) Amphiphilic ethyl cellulose brush polymers with mono and dual side chains: facile synthesis, self-assembly, and tunable temperature-pH responsivities. Polymer 53:956–966

    Article  CAS  Google Scholar 

  • Zhang Q, Schattling P, Theato P, Hoogenboom R (2012) Tuning the upper critical solution temperature behavior of poly(methyl methacrylate) in aqueous ethanol by modification of an activated ester comonomer. Polym Chem 3:1418–1426

    Article  CAS  Google Scholar 

  • Zhang X, Zhang J, Dong L, Ren S, Wu Q, Lei T (2017) Thermoresponsive poly(poly(ethylene glycol) methylacrylate)s grafted cellulose nanocrystals through SI-ATRP polymerization. Cellulose 24:4189–4203

    Article  CAS  Google Scholar 

  • Zhang L, Xia H, Xia F, Du Y, Wu Y, Gao Y (2021) Energy-saving smart windows with HPC/PAA hybrid hydrogels as thermochromic materials. ACS Appl Energy Mater 4:9783–9791

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Researcher’s Supporting Project Number (RSP2023R43), King Saud University, Riyadh, Saudi Arabia. This work was also supported by the Gachon University research fund of 2022 (GCU-202205700001).

Funding

As given in Acknowledgements section.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, TA, AM.; methodology, MAI.; validation, TA and CHP.; formal analysis, MAI and WA.; investigation, MAI.; resources, SN, MF and WA.; writing—original draft preparation, MAI, TA, SUH, CHP.; writing—review and editing, TA and CHP; supervision, TA and AM, SUH.; All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Toheed Akhter or Chan Ho Park.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval and consent to participate

The manuscript does not contain any unethical data, tables, images, or reports. No data, table, or figure has been copied from another source. Also, after publishing this paper, there won’t be any ethical problems.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.A., Akhter, T., Faheem, M. et al. Metal-free, visible light-mediated atom transfer radical polymerization of hydroxypropyl cellulose-graft-poly(methyl methacrylate)s: effect of polymer side chains on thermo-responsive behavior of hydroxypropyl cellulose. Cellulose 30, 7519–7533 (2023). https://doi.org/10.1007/s10570-023-05345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05345-y

Keywords

Navigation