Skip to main content
Log in

Preparation and characterization of dissolving pulp and lyocell fibers from corncob

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, dissolving pulp was prepared from corncob via alkali extraction, kraft cooking, metal ion removal, and H2O2 bleaching. Two cooking schemes were used to prepare unbleached corncob pulp samples with degrees of polymerization of 735 and 565. Employing an acid treatment with sodium ethylenediamine tetraacetate (EDTA) and sodium hexametaphosphate (SHMP) effectively reduced the ash and iron contents of the pulp; the optimal treatment conditions were pH 1.5, 0.4 wt% EDTA, and 0.4 wt% SHMP, which afforded pulp with iron and ash contents of 8.5 ppm and 0.02 wt%, respectively. A single-factor experiment was used to study the effects of H2O2 dosage and bleaching time on the brightness of the obtained pulp. The optimal bleaching parameters were determined as an H2O2 dosage of 3 wt% and a bleaching time of 70 min, which led to a brightness value greater than 82%. Fourier transform infrared spectroscopy and scanning electron microscopy results confirmed that the main component of corncob pulp was cellulose, and the fiber adopted twine-like morphologies with numerous spiral folds on the surface. The wet corncob pulp was used directly as the raw material for spinning lyocell fibers, and the results indicated that the corncob pulp had good spinnability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Ahuja V, Dasgupta D, Kshirsagar S, Ghosh P, More S, Gupta P, Behera B, Bhaskar T (2022) Crystalline xylitol production from corncob biomass with oral toxicity analysis. Ind Crop Prod 187:115407

    Article  CAS  Google Scholar 

  • Arumugam A, Malolan VV, Ponnusami V (2021) Contemporary pretreatment strategies for bioethanol production from corncobs: a comprehensive review. Waste Biomass Valoriz 12(2):577–612

    Article  CAS  Google Scholar 

  • Behin J, Zeyghami M (2009) Dissolving pulp from corn stalk residue and waste water of Merox unit. Chem Eng J 152(1):26–35

    Article  CAS  Google Scholar 

  • Boonchuay P, Techapun C, Leksawasdi N, Seesuriyachan P, Hanmoungjai P, Watanabe M, Takenaka S, Chaiyaso T (2018) An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresource Technol 256:399–407

    Article  CAS  Google Scholar 

  • Borbély É (2008) Lyocell, the new generation of regenerated cellulose. Acta Polytech Hung 5(3):11–18

    Google Scholar 

  • Cardona-Barrau D, Lachenal D, Chirat C (2001) Affinity of metal ions for kraft pulps studied by ESR Inhibition of their catalytic action in oxygen bleaching. J wood chem Technol 21(3):247–261. https://doi.org/10.1081/wct-100105375

    Article  CAS  Google Scholar 

  • Chang S, Guo Y, Wu B, He B (2017) Extracellular expression of alkali tolerant xylanase from Bacillus subtilis Lucky9 in E. coli and application for xylooligosaccharides production from agro-industrial waste. Int J Biol Macromol 96:249–256. https://doi.org/10.1016/j.ijbiomac.2016.11.032

    Article  CAS  PubMed  Google Scholar 

  • Ditzel FI, Prestes E, Carvalho BM, Demiate IM, Pinheiro LA (2017) Nanocrystalline cellulose extracted from pine wood and corncob. Carbohyd Polym 157:1577–1585

    Article  CAS  Google Scholar 

  • Fan Y, Zhang D, Zheng A, Zhao Z, Li H, Yang T (2019) Selective production of anhydrosugars and furfural from fast pyrolysis of corncobs using sulfuric acid as an inhibitor and catalyst. Chem Eng J 358:743–751

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524

    Article  CAS  Google Scholar 

  • Granholm K, Harju L, Ivaska A (2010) Desorption of metal ions from kraft pulps. Part 1. Chelation of hardwood and softwood kraft pulp with EDTA BioResources 5(1): 206–226

  • Hao X, Xu F, Zhang J (2022) Effect of pretreatments on production of xylooligosaccharides and monosaccharides from corncob by a two-step hydrolysis. Carbohyd Polym 285:119217

    Article  CAS  Google Scholar 

  • Huang GQ, Zhang Z, Han KT, Zhan HY, Zheng ZT (1998) Modified kraft pulping of eucalyptus wood. Proceedings of the international symposium on emerging technologies of pulping and papermaking of fast-growing wood, Guangzhou, China

  • Jiang Z, Hu C (2016) Selective extraction and conversion of lignin in actual biomass to monophenols: a review. J Energy Chem 25(6):947–956

    Article  Google Scholar 

  • Kahar P, Taku K, Tanaka S (2010) Enzymatic digestion of corncobs pretreated with low strength of sulfuric acid for bioethanol production. J Biosci Bioeng 110(4):453–458

    Article  CAS  PubMed  Google Scholar 

  • Klimont Z, Kupiainen K, Heyes C, Purohit P, Cofala J, Rafaj P, Borken-Kleefeld J, Schöpp W (2017) Global anthropogenic emissions of particulate matter including black carbon. Atmos Chem Phys 17(14):8681–8723

    Article  CAS  Google Scholar 

  • Kumar V, Sandhu PP, Ahluwalia V, Mishra BB, Yadav SK (2019) Improved upstream processing for detoxification and recovery of xylitol produced from corncob. Bioresource Technol 291:121931

    Article  CAS  Google Scholar 

  • Liu R, Yu H, Huang Y (2005) Structure and morphology of cellulose in wheat straw. Cellulose 12(1):25–34

    Article  Google Scholar 

  • Luo Q, Liu HB (1998) A Kappa number mathematical model for batch kraft pulping control. Proceedings of the international symposium on emerging technologies of pulping and papermaking of fast-growing wood, Guangzhou, China

  • Lv X, Li Q, Jiang Z, Wang Y, Li J, Hu C (2018) Structure characterization and pyrolysis behavior of organosolv lignin isolated from corncob residue. J Anal Appl Pyrol 136:115–124

    Article  CAS  Google Scholar 

  • Mateos-Espejel E, Radiotis T, Jemaa N (2013) Implications of converting a kraft pulp mill to a dissolving pulp operation with a hemicellulose extraction stage. Tappi J 12(2):29–38

    Article  CAS  Google Scholar 

  • Perepelkin KE (2007) Lyocell fibres based on direct dissolution of cellulose in N-methylmorpholine N-oxide: development and prospects. Fibre Chem 39(2):163–172

    Article  CAS  Google Scholar 

  • Qin C, Yang L, Li C, Chen Y (2008) Effect of transition metal ions on hydrogen peroxide bleaching of recycled pulp. J Guangxi Univ (Nat Sci Ed) (2): 156–158

  • Qing Q, Guo Q, Zhou L, Wan Y, Xu Y, Ji H, Gao X, Zhang Y (2017) Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride. Bioresource Technol 226:247–254

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26(9):1763–1837

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Adorjan I, Hofinger A, Sixta H, Firgo H, Kosma P (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)−degradation processes and stabilizers. Cellulose 9(3–4):283–291

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Milacher W, Adorjan I, Hofinger A, Kosma P (2005) Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 2: isolation and identification of chromophores. Cellulose 12:197–208

    Article  CAS  Google Scholar 

  • Shao X, Wang J, Liu Z, Hu N, Liu M, Xu Y (2020) Preparation and characterization of porous microcrystalline cellulose from corncob. Ind Crop Prod 151:112457

    Article  CAS  Google Scholar 

  • Shatalov AA, Pereira H (2005) Arundo donax L reed: new perspectives for pulping and bleaching Part 4 Peroxide bleaching of organosolv pulps. Bioresour Technol 96(8):865–872. https://doi.org/10.1016/j.biortech.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  • Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohyd Res 340(1):97–106

    Article  CAS  Google Scholar 

  • Tao S, Ru MY, Du W, Zhu X, Zhong QR, Li BG, Shen GF, Pan XL, Meng WJ, Chen YL (2018) Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey. Nat Energy 3(7):567–573

    Article  Google Scholar 

  • Wang H, Zhang X, Wang D, Cui C, Gao C, Wang L, Wang Y, Bi Y (2016) Estimation and utilization of corncob resources in China. J China Agr Resour Reg Plan 37(1):1–8

    Google Scholar 

  • Wendler F, Kolbe A, Meister F, Heinze T (2005) Thermostability of Lyocell Dopes Modified with Surface-Active Additives. Macromol Mater Eng 290(8):826–832

    Article  CAS  Google Scholar 

  • Wendler F, Konkin A, Heinze T (2008) Studies on the stabilization of modified Lyocell solutions. Macromol Symposia 262(1):72–84

    Article  CAS  Google Scholar 

  • Weyant CL, Chen P, Vaidya A, Li C, Zhang Q, Thompson R, Ellis J, Chen Y, Kang S, Shrestha GR (2019) Emission measurements from traditional biomass cookstoves in South Asia and Tibet. Environ Sci Technol 53(6):3306–3314

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Fan G, Yu T, Sun B, Tang H, Teng C, Yang R, Li X (2019) Biochemical characteristics of the mutant xylanase T-XynC (122) C (166) and production of xylooligosaccharides from corncobs. Ind Crop Prod 142:111848

    Article  CAS  Google Scholar 

  • Wu J, Kong S, Yan Y, Yao L, Yan Q, Liu D, Shen G, Zhang X, Qi S (2022) Neglected biomass burning emissions of air pollutants in China-views from the corncob burning test, emission estimation, and simulations. Atmos Environ 278:119082

    Article  CAS  Google Scholar 

  • Xiao B, Sun X, Sun R (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stabil 74(2):307–319

    Article  CAS  Google Scholar 

  • Xu X, Liu Q (2016) Eucalyptus kraft pulping with pretreatment of cold alkali impregnation and compression. Trans China Pulp Paper 31(3):7–11

    Google Scholar 

  • Yang G, Yang Y, Zhang H, Shao H (2021) Influences of stabilizers on lyocell spinning dope and fiber properties. Polym Test 99:107228

    Article  CAS  Google Scholar 

  • Yang G, Peng K, Zhang H, Song X, Zhou Y, Shao H (2022) Structure and properties of flame-retardant lyocell fibers prepared by blending method. Polym Eng Sci 62(10):3476–3486

    Article  CAS  Google Scholar 

  • Zhang H, Zhang H, Tong M, Shao H, Hu X (2008) Comparison of the structures and properties of lyocell fibers from high hemicellulose pulp and high α-cellulose pulp. J Appl Polym Sci 107(1):636–641

    Article  CAS  Google Scholar 

  • Zhang H, Xu Y, Yu S (2017) Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Bioresour Technol 234:343–349

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Yuan Z, Kapu N, Chang X, Beatson R, Trajano H, Martinez D (2017) Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp. Bioresour Technol 223:40–46

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, He J, Ren Y (2014) Study on extraction cooking process of cellulose from cotton stalk using organic solvent. Shanghai Textile Sci Technol 42(8):37–39

    Google Scholar 

  • Zong Z, Wang X, Tian C, Chen Y, Qu L, Ji L, Zhang G (2016) Source apportionment of PM 2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning. Atmos Chem Phys 16(17):11249–11265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from the National Key R&D Program of China (2020YFC1910303). We also thank Suzanne Adam, PhD, from Liwen Bianji (Edanz) (http://www.liwenbianji.cn/) for editing the English text of a draft of this manuscript.

Funding

National Key Research and Development Program of China, 2020YFC1910303

Author information

Authors and Affiliations

Authors

Contributions

GY: Conceptualization, Supervision, Writing—original draft, review & editing, Funding acquisition, Project administration. YZ: Resources, Methodology, Investigation, Data curation, Formal analysis. HZ: Conceptualization, Methodology. SW: Investigation, Visualization. XY: Formal analysis, Validation. HS: Writing—review & editing.

Corresponding author

Correspondence to Gesheng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Zhou, Y., Zhang, H. et al. Preparation and characterization of dissolving pulp and lyocell fibers from corncob. Cellulose 30, 4841–4853 (2023). https://doi.org/10.1007/s10570-023-05179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05179-8

Keywords

Navigation