Skip to main content
Log in

Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Conductive and self-healing hydrogels are among the emerging materials that mimic the human skin and are important due to their probable prospects in soft robots and wearable electronics. However, the mechanical properties of the hydrogel matrix limit their applications. In this study, we developed a physicochemically dual cross-linked chemically modified-cellulose nanofibers-carbon nanotubes/polyacrylic acid (TOCNF-CNTs/PAA) hydrogel. The TOCNFs acted both as a nanofiller and dispersant to increase the mechanical strength of the PAA matrix and break the agglomerates of the CNTs. The final self-healing and conductive TOCNF-CNTs/PAA-0.7 (mass ratio of CNTs to AA) hydrogel with a uniform texture exhibited highly intrinsic stretchability (breaking elongation to ca. 850%), enhanced tensile properties (ca. 59 kPa), ideal conductivity (ca. 2.88 S m− 1) and pressure sensitivity. Besides, the composite hydrogels achieved up to approximately 98.36% and 99.99% self-healing efficiency for mechanical and electrical properties, respectively, without any external stimuli. Therefore, the as-designed multi-functional self-healing hydrogels, combined with stretching, sensitivity, and repeatability, possess the ability to monitor human activity and develop multifunctional, advanced, and commercial products such as wearable strain sensors, health monitors, and smart robots.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Alias SA, Mhd Sarbon N (2019) Rheological, physical, and mechanical properties of chicken skin gelatin films incorporated with potato starch. NPJ Sci Food 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Anjum S, Gurave P, Badiger MV, Torris A, Tiwari N, Gupta B (2017) Design and development of trivalent aluminum ions induced self-healing polyacrylic acid novel hydrogels. Polymer 126:196–205

    Article  CAS  Google Scholar 

  • Cai Y et al (2020) Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci Adv 6:eabb5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y et al (2019) A skin-inspired stretchable, self-healing and electro-conductive hydrogel with a synergistic triple network for wearable strain sensors applied in human-motion detection. Nanomaterials 9:1737

    Article  CAS  PubMed Central  Google Scholar 

  • Dai S, Wang S, Yan H, Xu J, Hu H, Ding J, Yuan N (2019) Stretchable and self-healable hydrogel-based capacitance pressure and strain sensor for electronic skin systems. Mater Res Express 6:0850b0859

    Article  Google Scholar 

  • Dong B, Wu S, Zhang L, Wu Y (2016) High performance natural rubber composites with well-organized interconnected graphene networks for strain-sensing application. Ind Eng Chem Res 55:4919–4929

    Article  CAS  Google Scholar 

  • Dong K et al (2018) A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv Mater 30:1804944

    Article  Google Scholar 

  • Eom J et al (2017) Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl Mater Interfaces 9:10190–10197

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromol 13:2188–2194

    Article  CAS  Google Scholar 

  • Gao B et al (2016a) Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites. Compos A Appl S 90:433–440

    Article  CAS  Google Scholar 

  • Gao F, Zhang Y, Li Y, Xu B, Cao Z, Liu W (2016b) Sea cucumber-inspired autolytic hydrogels exhibiting tunable high mechanical performances, repairability, and reusability. ACS Appl Mater Interfaces 8:8956–8966

    Article  CAS  PubMed  Google Scholar 

  • Gu G, Xu H, Peng S, Li L, Chen S, Lu T, Guo X (2019) Integrated soft ionotronic skin with stretchable and transparent hydrogel-elastomer ionic sensors for hand-motion monitoring. Soft Robot 6:368–376

    Article  PubMed  Google Scholar 

  • Guo Y, Zhou X, Tang Q, Bao H, Wang G, Saha P (2016) A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors. J Mater Chem A 4:8769–8776

    Article  CAS  Google Scholar 

  • Guo Q, Luo Y, Liu J, Zhang X, Lu C (2018) A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. J Mater Chem C 6:2139–2147

    Article  CAS  Google Scholar 

  • Han J, Lu K, Yue Y, Mei C, Huang C, Wu Q, Xu X (2019a) Nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors. Ind Crop Prod 128:94–107

    Article  CAS  Google Scholar 

  • Han J et al (2019b) A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon 149:1–18

    Article  CAS  Google Scholar 

  • Hu S et al (2019) Elastomeric conductive hybrid hydrogels with continuous conductive networks. J Mater Chem B 7:2389–2397

    Article  CAS  PubMed  Google Scholar 

  • Huang Y et al (2015) A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat Commun 6:10310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  PubMed  Google Scholar 

  • Jing X, Mi H-Y, Peng X-F, Turng L-S (2018) Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon 136:63–72

    Article  CAS  Google Scholar 

  • Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromol 14:1160–1165

    Article  CAS  Google Scholar 

  • Krause B, Mende M, Pötschke P, Petzold G (2010) Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon 48:2746–2754

    Article  CAS  Google Scholar 

  • Kumar P, Maiti UN, Lee KE, Kim SO (2014) Rheological properties of graphene oxide liquid crystal. Carbon 80:453–461

    Article  CAS  Google Scholar 

  • Li T, Li Y, Zhang T (2019) Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc Chem Res 52:288–296

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, He K, Chen G, Leow WR, Chen X (2017) Nature-inspired structural materials for flexible electronic devices. Chem Rev 117:12893–12941

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Li K, Hussain I, Oderinde O, Yao F, Zhang J, Fu G (2018a) A conductive self-healing double network hydrogel with toughness and force sensitivity. Chem Eur J 24:6632–6638

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Oderinde O, Hussain I, Yao F, Fu G (2018b) Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties. Polymer 144:111–120

    Article  CAS  Google Scholar 

  • Lu S et al (2018) Diallyl dimethyl ammonium chloride-grafted cellulose filter membrane via ATRP for selective removal of anionic dye. Cellulose 25:7261–7275

    Article  CAS  Google Scholar 

  • Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl S 41:1345–1367

    Article  Google Scholar 

  • Massoumi B, Jaymand M, Samadi R, Entezami AA (2014) In situ chemical oxidative graft polymerization of thiophene derivatives from multi-walled carbon nanotubes. J Polym Res 21:422

    Article  Google Scholar 

  • Olivier C, Moreau C, Bertoncini P, Bizot H, Chauvet O, Cathala B (2012) Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films. Langmuir 28:12463–12471

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691

    Article  CAS  Google Scholar 

  • Schwartz G, Tee BC, Mei J, Appleton AL, Kim DH, Wang H, Bao Z (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4:1859

    Article  PubMed  Google Scholar 

  • Shao C, Chang H, Wang M, Xu F, Yang J (2017) High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl Mater Interfaces 9:28305–28318

    Article  CAS  PubMed  Google Scholar 

  • Sun X et al (2020) Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chem Eng J 382:122832

    Article  CAS  Google Scholar 

  • Šupová M, Martynková GS, Barabaszová K (2011) Effect of nanofillers dispersion in polymer matrices: a review. Sci Adv Mater 3:1–25

    Article  Google Scholar 

  • Tan X, Wang Y, Du W, Mu T (2020) Top-down extraction of silk protein nanofibers by natural deep eutectic solvents and application in dispersion of multiwalled carbon nanotubes for wearable sensing. ChemSusChem 13:321–327

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Zhou T, Yang J, Zhang Q, Chen F, Fu Q, Yang L (2011) Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloid Surface B 86:189–197

    Article  CAS  Google Scholar 

  • Varga M et al (2017) Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon 111:54–61

    Article  CAS  Google Scholar 

  • Wan C, Li J (2016) Graphene oxide/cellulose aerogels nanocomposite: preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr polym 150:172–179

    Article  CAS  PubMed  Google Scholar 

  • Wan C, Jiao Y, Wei S, Zhang L, Wu Y, Li J (2019) Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem Eng J 359:459–475

    Article  CAS  Google Scholar 

  • Wang X, Dong L, Zhang H, Yu R, Pan C, Wang ZL (2015) Recent progress in electronic skin. Adv Sci 2:1500169

    Article  Google Scholar 

  • Wang T et al (2018a) A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv Funct Mater 28:1705551

    Article  Google Scholar 

  • Wang Y et al (2018b) A novel design strategy for triple-network structure hydrogels with high-strength, tough and self-healing properties. Polymer 135:16–24

    Article  CAS  Google Scholar 

  • Wei Z et al (2013) Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polym Chem 4:4601

    Article  CAS  Google Scholar 

  • Xia S, Song S, Jia F, Gao G (2019) A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J Mater Chem B 7:4638–4648

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wang G, Wu Y, Ren X, Gao G (2019) Ultrastretchable wearable strain and pressure sensors based on adhesive, tough, and self-healing hydrogels for human motion monitoring. ACS Appl Mater Interfaces 11:25613–25623

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Shao B, Liu T, Zhang Y, Huang R, Chen F, Fu Q (2018) Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl Mater Interfaces 10:8245–8257

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Luo S, Zhou X, Li J, Fu J, Yang W, Wei D (2019a) Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl Mater Interfaces 11:14997–15006

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S (2019b) Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 31:1904765

    Article  CAS  Google Scholar 

  • Yu H, Chen P, Chen W, Liu Y (2014) Effect of cellulose nanofibers on induced polymerization of aniline and formation of nanostructured conducting composite. Cellulose 21:1757–1767

    Article  CAS  Google Scholar 

  • Yue Y, Luo H, Han J, Chen Y, Jiang J (2020) Assessing the effects of cellulose-inorganic nanofillers on thermo/pH-dual responsive hydrogels. Appl Surf Sci 528:146961

    Article  CAS  Google Scholar 

  • Zhang T, Cheng Q, Ye D, Chang C (2017) Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. Carbohydr Polym 169:139–148

    Article  CAS  PubMed  Google Scholar 

  • Zheng C et al (2020) A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr Polym 250:116905

    Article  CAS  PubMed  Google Scholar 

  • Zhong M, Liu YT, Liu XY, Shi FK, Zhang LQ, Zhu MF, Xie XM (2016) Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency. Soft Matter 12:5420–5428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by National Natural Science Foundation of China (31770609, 31901274), Natural Science Foundation of Jiangsu Province for Outstanding Young Scholars (BK20180090), Qing Lan Project of Jiangsu Province (2019), 333 Project Foundation of Jiangsu Province (BRA2018337), 13th China Special Postdoctoral Science Foundation (2020T130303), China Postdoctoral Science Foundation (2019M661854), Postdoctoral Science Foundation of Jiangsu Province (2019K142), Priority Academic Program Development (PAPD), and Analysis and Test Center of Nanjing Forestry University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiying Yue, Jian Li or Jingquan Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Lu, K., Lu, Y. et al. Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel. Cellulose 28, 4295–4311 (2021). https://doi.org/10.1007/s10570-021-03782-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03782-1

Keywords

Navigation