Skip to main content
Log in

Enhancing cellulose nanofibrillation of eucalyptus Kraft pulp by combining enzymatic and mechanical pretreatments

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanofibrillated cellulose (NFC) extracted from biomass has potential applications in material science and biomedical engineering. In this study, NFC was obtained from bleached eucalyptus Kraft pulp (BEKP) using two commercial enzyme cocktails with cellulolytic and hemicellulolytic activities and non-catalytic protein (swollenin), followed by ultrasonication. This work represents an initial study of the implementation of non-catalytic proteins along with enzymes to extract NFC from biomass. Enzymatic pretreatment was performed to partially remove hemicellulose while enhancing cellulose accessibility for NFC extraction. Cellulase pretreatment with xylanase and swollenin supplementation increased cellulose accessibility and fiber swelling due to extensive hemicellulose removal (> 80%) and fiber morphology changes. Subsequent ultrasonication was performed for cellulose nanofibrillation resulting in high NFC yields (61–97%), while keeping NFC properties almost unchanged. Through this process, cellulose nanofibers with diameters ranging from 3 nm to 10 nm were effectively isolated from BEKP, which allows to produce high quality NFC for further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul Khalil HPS, Davoudpour Y, Nazrul Islam M, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    CAS  PubMed  Google Scholar 

  • Abitbol T, Rivkin A, Cao Y, Nevo Y, Abrahan E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotech 39:76–88

    CAS  PubMed  Google Scholar 

  • Adsul M, Sandhu SK, Singhania RR, Gupta R, Puri SK, Mathur A (2020) Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme Microb Tech 133:109442

    CAS  Google Scholar 

  • Aïssa K, Karaaslan MA, Renneckar S, Saddler JN (2019) Functionalizing cellulose nanocrystals with click modifiable carbohydrate-binding modules. Biomacromol 20(8):3087–3093

    Google Scholar 

  • Arantes V, Dias IKR, Berto GL, Pereira B, Marotti BS, Nogueira CFO (2020) The current status of the enzyme-mediated isolation and functionalization of nanocelluloses: production, properties, techno-economics, and opportunities. Cellulose. https://doi.org/10.1007/s10570-020-03332-1

    Article  Google Scholar 

  • Baati R, Magnin A, Boufi S (2017) High solid content production of nanofibrillar cellulose via continuous extrusion. ACS Sustain Chem Eng 5:2350–2359

    CAS  Google Scholar 

  • Bondancia TJ, Mattoso LHC, Marconcini JM, Farinas CS (2017) A new approach to obtain cellulose nanocrystals and ethanol from eucalyptus cellulose pulp via the biochemical pathway. Biotechnol Prog 33:1085–1095

    CAS  PubMed  Google Scholar 

  • Chandra R, Ewanick S, Hsieh C, Saddler JN (2008) The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: a modified simons’ staining technique. Biotechnol Prog 24:1178–1185

    CAS  PubMed  Google Scholar 

  • De Campos A, Correa AC, Cannella D, Teixeira EM, Marconcini JM, Dufresne A, Mattoso LHC, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500

    Google Scholar 

  • Debiagi F, Faria-Tischer PCS, Mali S (2020) Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose 27:1975–1988

    CAS  Google Scholar 

  • Di Giorgio L, Salgado PR, Dufresne A, Mauri AN (2020) Nanocelluloses from phormium (Phormium tenax) fibers. Cellulose 27:4975–4990

    Google Scholar 

  • Djafari Petroudy SR, Ghasemian A, Resalati H, Syverud K, Chinga-Carrasco G (2015) The effect of xylan on the fibrillation efficiency of DED bleached soda bagasse pulp and on nanopaper characteristics. Cellulose 22:385–395

    CAS  Google Scholar 

  • Ferreira RR, Souza AG, Nunes LL, Shahi N, Rangari VK, dos Santos RD (2020) Use of ball mill to prepare nanocellulose from eucalyptus biomass: challenges and process optimization by combined method. Mater Today Commun 22:100755

    CAS  Google Scholar 

  • Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808–1814

    CAS  Google Scholar 

  • Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhonr SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2511–3006

    Google Scholar 

  • French AD, Santiago-Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588

    CAS  Google Scholar 

  • Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stabil 95:1502–1508

    CAS  Google Scholar 

  • Gomes VJ, Longue D, Colodette JL, Ribeiro RA (2014) The effect of eucalypt pulp xylan content on its bleachability, refinability and drainability. Cellulose 21:607–614

    CAS  Google Scholar 

  • Gourlay K, Arantes V, Saddler JN (2012) Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol Biofuels 5:51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gourlay K, Hu J, Arantes V, Andberg M, Saloheimo M, Penttilä M, Saddler J (2013) Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Bioresour Technol 142:498–503

    CAS  PubMed  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure-process-yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402

    CAS  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Tian D, Renneckar S, Saddler JN (2018) Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Sci Rep 8:3195

    PubMed  PubMed Central  Google Scholar 

  • Immergut EH, Schurz J, Mark H (1953) Viscosity-number-molecular weight relationship for cellulose and investigations of nitrocellulose in various solvents. Monatsh Chem 84:219–249

    CAS  Google Scholar 

  • Long L, Tian D, Hu J, Wang F, Saddler J (2017) A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation. Bioresour Technol 243:898–904

    CAS  PubMed  Google Scholar 

  • Lv D, Du H, Che X, Wu M, Zhang Y, Liu C, Nie S, Zhang X, Li B (2019) Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: kinetic study and characterization. ACS Sustain Chem Eng 7:8827–8833

    Google Scholar 

  • Mahardika M, Abral H, Kasim A, Arief S, Asrofi M (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6:28

    Google Scholar 

  • Merklein K, Fong SS, Deng Y (2016) Chapter 11-Biomass utilization. In: Eckert C, Trinh C (eds) Biotechnology for biofuel production and optimization, 1st edn. Elsevier, New York, pp 291–324

    Google Scholar 

  • Michelin M, Gomes D, Romaní A, Polizeli MLTM, Teixeira JA (2020) Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules 25:3411

    CAS  PubMed Central  Google Scholar 

  • Morrison JM, Elshahed MS, Youssef NH (2016) Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. Strain C1A effectively releases sugars from pretreated corn stover and switchgrass. Sci Rep 6:29217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Google Scholar 

  • Pereira B, Arantes V (2020) Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading. Ind Crop Prod 152:112377

    CAS  Google Scholar 

  • Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G (2018) Nanocellulose: extraction and application. Carbon Resour Convers 1:32–43

    Google Scholar 

  • Pires JRA, Souza VGL, Fernando AL (2019) Valorization of energy crops as a source for nanocellulose production—current knowledge and future prospects. Ind Crop Prod 140:111642

    CAS  Google Scholar 

  • Qua EH, Hornsby PR, Sharma HSS, Lyons G (2011) Preparation and characterization of cellulose nanofibers. J Mater Sci 46:6029–6045

    CAS  Google Scholar 

  • Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828

    CAS  Google Scholar 

  • Ramakrishnan A, Ravishankar K, Dhamodharan R (2019) Preparation of nanofibrillated cellulose and nanocrystalline cellulose from surgical cotton and cellulose pulp in hot-glycerol medium. Cellulose 26:3127–3141

    CAS  Google Scholar 

  • Reese ET, Segal L, Tripp VW (1957) The effect of cellulase on the degree of polymerization of cellulose and hydrocellulose. Text Res J 27:626–632

    CAS  Google Scholar 

  • Ribeiro RSS, Pohlmann BC, Calado V, Bojorge N, Pereira N Jr (2019) Production of nanocellulose by enzymatic hydrolysis: trends and challenges. Eng Life Sci 19:279–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211

    CAS  PubMed  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. NREL/TP-510-42623

  • Tibolla H, Pelissari FM, Martins JT, Vicente AA, Menegalli FC (2018) Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food Hydrocoll 75:192–201

    CAS  Google Scholar 

  • Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibers from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    CAS  PubMed  Google Scholar 

  • Tsukamoto J, Durán N, Tasic L (2013) Nanocellulose and bioethanol production from Orange waste using isolated microorganisms. J Brazil Chem Soc 24:1537–1543

    CAS  Google Scholar 

  • Wan J, Wang Y, Xiao Q (2010) Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp. Bioresour Technol 101:4577–4583

    CAS  PubMed  Google Scholar 

  • Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270–1275

    CAS  Google Scholar 

  • Wang W, Mozuch MD, Sabo RC, Kersten P, Zhu JY, Jin Y (2014) Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose 22:351–361

    Google Scholar 

  • Yadav C, Saini A, Maji PK (2017) Energy efficient facile extraction process of cellulose nanofibers and their dimensional characterization using light scattering techniques. Carbohydr Polym 165:276–284

    CAS  PubMed  Google Scholar 

  • Yarbrough JM, Zhang R, Mittal A, Wall TV, Bomble YJ, Decker SR, Himmel ME, Ciesielski PN (2017) Multifuncional cellulolytic enzymes outperform processive fungal cellulases coproduction of nanocellulose and biofuels. ACS Nano 11:3101–3109

    CAS  PubMed  Google Scholar 

  • Zhou H, St. John F, Zhu JY (2019) Xylanase pretreatment of wood fibers for producing cellulose nanofibrils: a comparison of different enzyme preparations. Cellulose 26:543–555

    CAS  Google Scholar 

Download references

Acknowledgments

Florencia Cebreiros thanks the CAP-UdelaR and ANII from Uruguay for the PhD scholarship and student mobility award (MOV_IDRC_2018_1_151791), respectively. The authors would like to thank UPM Fray Bentos (Uruguay) for providing the raw material, Novozymes (Davis, CA) for providing the enzymes, and VTT Technical Research Center (Finland) for providing the swollenin used in this work. Financial support was provided by Agencia Nacional de Investigación e Innovación (ANII_FMV_1_2019_1_156233, Uruguay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Lareo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cebreiros, F., Seiler, S., Dalli, S.S. et al. Enhancing cellulose nanofibrillation of eucalyptus Kraft pulp by combining enzymatic and mechanical pretreatments. Cellulose 28, 189–206 (2021). https://doi.org/10.1007/s10570-020-03531-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03531-w

Keywords

Navigation