Skip to main content
Log in

Synergistic reinforcing effect of nano-montmorillonite and cellulose nanocrystals on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The montmorillonite/cellulose nanocrystal/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) ternary nanocomposites were prepared by using 1 wt% CNCs and various amounts MMT. A synergistic enhancement was found between MMT, CNCs and PHBH. Intermolecular interactions occurred between O–H of MMT, O–H of CNCs and C=O of PHBH. Scanning electron microscopy (SEM) reveals that the compatibility of nanocomposites is the best with 3 wt% MMT content. It can be suggested that putting MMT into CNC-PHBH (CP) binary nanocomposites forms intercalation structures based on the XRD pattern. Thermogravimetric analysis shows that the thermal degradation temperature of nanocomposites is improved to 236.14 °C on dispersing 3 wt% MMT. Differential scanning calorimetry and polarizing optical microscopy suggest that MMT improves the crystallinity of nanocomposites, thus proving the good nucleation performance of MMT as a nucleating agent. Meanwhile, the mechanical properties of nanocomposites are also improved. The elastic modulus of nanocomposites improves by 53.5% compared with CP. With the addition of 5 wt% MMT, water vapor transmission rate and oxygen transmission rate reach 30.74 g/m2 day and 34.82 cm3/m2 day respectively, which satisfies the preservation conditions of meat packaging.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achachlouei BF, Zahedi Y (2018) Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydr Polym 199:415–425

    Article  CAS  Google Scholar 

  • Ariffin H, Nishida H, Shirai Y, Hassan MA (2010) Highly selective transformation of poly (R)-3-hydroxybutyric acid into trans-crotonic acid by catalytic thermal degradation. Polym Degrad Stabil 95(8):1375–1381

    Article  CAS  Google Scholar 

  • Arjmandi R, Hassan A, Haafiz MKM, Zakaria Z, Islam MS (2016) Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites. Int J Biol Macromol 82:998–1010

    Article  CAS  PubMed  Google Scholar 

  • Bittmann B, Bouza R, Barral L, Castro-Lopez M, Dopico-Garcia S (2015) Morphology and thermal behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(butyleneadipate-co-terephthalate)/clay nanocomposites. Polym Compos 36(11):2051–2058

    Article  CAS  Google Scholar 

  • Blettler MCM, Abrial E, Khan FR, Sivri N, Espinola LA (2018) Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps. Water Res 143:416–424

    Article  CAS  PubMed  Google Scholar 

  • Chae Y, An YJ (2018) Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ Pollut 240:387–395

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen Y, Xie J, Xu Z, Tang Z, Yang F, Fu K (2017) Effects of montmorillonite on the properties of cross-linked poly(vinyl alcohol)/boric acid films. Prog Org Coat 112:66–74

    Article  CAS  Google Scholar 

  • Czerniecka-Kubicka A, Fracz W, Jasiorski M, Blazejewski W, Pilch-Pitera B, Pyda M, Zarzyka I (2017) Thermal properties of poly(3-hydroxybutyrate) modified by nanoclay. J Therm Anal Calorim 128(3):1513–1526

    Article  CAS  Google Scholar 

  • Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K (2013) Nucleation effect of montmorillonite with beta-nucleating surface on polymorphous of melt-crystallized isotactic polypropylene nanocomposites. Compos Sci Technol 89:38–43

    Article  CAS  Google Scholar 

  • Haider TP, Volker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Edit 58(1):50–62

    Article  CAS  Google Scholar 

  • Islam MS, Chen L, Sisler J, Tam KC (2018) Cellulose nanocrystal (CNC)-inorganic hybrid systems: synthesis, properties and applications. J Mat Chem B 6(6):864–883

    Article  CAS  Google Scholar 

  • Jonnalagadda DKT (2016) Effect of natural flours on crystallization behaviors of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Appl Polym Sci 133(27):1–11

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393

    Article  CAS  Google Scholar 

  • Khandal D, Pollet E, Avérous L (2016) Elaboration and behavior of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-nano-biocomposites based on montmorillonite or sepiolite nanoclays. Eur Polym J 81:64–76

    Article  CAS  Google Scholar 

  • Koller M, Marsalek L, Dias M, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotech 37:24–38

    Article  CAS  Google Scholar 

  • Li F, Yu H-Y, Wang Y-Y, Zhou Y, Zhang H, Yao J-M, Ahdalkarim SYH, Tam KC (2019a) Natural biodegradable Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites with multifunctional cellulose nanocrystals/graphene oxide hybrids for high-performance food packaging. J Agric Food Chem 67(39):10954–10967

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhou M, Cheng G, Cheng F, Lin Y, Zhu P-X (2019b) Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers. Carbohydr Polym 210:429–436

    Article  CAS  PubMed  Google Scholar 

  • Lu TJ, Jiang M, Jiang ZG, Hui D, Wang ZY, Zhou ZW (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Pt B-Eng 51:28–34

    Article  CAS  Google Scholar 

  • Malmir S, Barral L, Bouza R, Esperanza M, Seoane M, Feijoo-Bandin S, Lago F (2019) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanocrystal films: artificial weathering, humidity absorption, water vapor transmission rate, antimicrobial activity and biocompatibility. Cellulose 26(4):2333–2348

    Article  CAS  Google Scholar 

  • Masood F, Yasin T, Hameed A (2015) Polyhydroxyalkanoates—what are the uses? Current challenges and perspectives. Crit Rev Biotechnol 35(4):514–521

    Article  CAS  PubMed  Google Scholar 

  • Masood F, Haider H, Yasin T (2019) Sepiolite/poly-3-hydroxyoctanoate nanocomposites: effect of clay content on physical and biodegradation properties. Appl Clay Sci 175:130–138

    Article  CAS  Google Scholar 

  • Mirmusavi MH, Zadehnajar P, Semnani D, Karbasi S, Fekrat F, Heidari F (2019) Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications. Int J Biol Macromol 132:822–835

    Article  CAS  PubMed  Google Scholar 

  • Puglia D, Fortunati E, D'Amico DA, Miri V, Stoclet G, Manfredi LB, Cyras VP, Kenny JM (2016) Influence of processing conditions on morphological, thermal and degradative behavior of nanocomposites based on plasticized poly(3-hydroxybutyrate) and organo-modified clay. J Polym Environ 24(1):12–22

    Article  CAS  Google Scholar 

  • Rebia RA, Rozet S, Tamada Y, Tanaka T (2018) Biodegradable PHBH/PVA blend nanofibers: Fabrication, characterization, in vitro degradation, and in vitro biocompatibility. Polym Degrad Stabil 154:124–136

    Article  CAS  Google Scholar 

  • Salehabadi A, Bakar MA (2013) Poly (3-hydroxybutyrate)—organo modified montmorillonite nanohybrid; preparation and characterization. Adv Mater Res 622–623:263–270

    Google Scholar 

  • Tunc S, Duman O, Polat TG (2016) Effects of montmorillonite on properties of methyl cellulose/carvacrol based active antimicrobial nanocomposites. Carbohydr Polym 150:259–268

    Article  CAS  PubMed  Google Scholar 

  • Urbanek AK, Rymowicz W, Mironczuk AM (2018) Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 102(18):7669–7678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaezi K, Asadpour G, Sharifi SH (2020) Bio nanocomposites based on cationic starch reinforced with montmorillonite and cellulose nanocrystals: Fundamental properties and biodegradability study. Int J Biol Macromol 146:374–386

    Article  CAS  PubMed  Google Scholar 

  • Vandewijngaarden J, Murariu M, Dubois P, Carleer R, Yperman J, Adriaensens P, Schreurs S, Lepot N, Peeters R, Buntinx M (2014) Gas permeability properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Polym Environ 22(4):501–507

    Article  CAS  Google Scholar 

  • Wang C, Ge XS, Jiang YJ (2019a) Synergistic effect of graphene oxide/montmorillonite-sodium carboxymethycellulose ternary mimic-nacre nanocomposites prepared via a facile evaporation and hot- pressing technique. Carbohydr Polym 222:8

    Article  CAS  Google Scholar 

  • Wang JW, Gardner DJ, Stark NM, Bousfield DW, Tajvidi M, Cai ZY (2018) Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain Chem Eng 6(1):49–70

    Article  CAS  Google Scholar 

  • Wang SC, Xiang HX, Wang RL, Zhou Z, Zhu MF (2015) Influence of amorphous alkaline lignin on the crystallization behavior and thermal properties of bacterial polyester. J Appl Polym Sci 132(4):9

    Google Scholar 

  • Wang YY, Yu H-Y, Yang L, Abdalkarim SYH, Chen W-L (2019b) Enhancing long-term biodegradability and UV-shielding performances of transparent polylactic acid nanocomposite films by adding cellulose nanocrystal-zinc oxide hybrids. Int J Biol Macromol 141:893–905

    Article  CAS  PubMed  Google Scholar 

  • Xu PW, Feng YQ, Ma PM, Chen YJ, Dong WF, Chen MQ (2017) Crystallization behaviours of bacterially synthesized poly(hydroxyalkanoate)s in the presence of oxalamide compounds with different configurations. Int J Biol Macromol 104:624–630

    Article  CAS  PubMed  Google Scholar 

  • Yu HY, Qin ZY, Liu L, Yang XG, Zhou Y, Yao JM (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28

    Article  CAS  Google Scholar 

  • Yu HY, Zhang H, Song ML, Zhou Y, Yao J, Ni QQ (2017) From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl Mater Interfaces 9(50):43920–43938

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Sun B, Zhang D, Chen G, Yang X, Yao J (2014) Reinforcement of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. J Mat Chem B 2(48):8479–8489

    Article  CAS  Google Scholar 

  • Zaldua N, Mugica A, Zubitur M, Iturrospe A, Arbe A, Lo Re G, Raquez JM, Dubois P, Muller AJ (2016) The role of PLLA-g-montmorillonite nanohybrids in the acceleration of the crystallization rate of a commercial PLA. CrystEngComm 18(48):9334–9344

    Article  CAS  Google Scholar 

  • Zhou J, Ma X, Li J, Zhu L (2019) Preparation and characterization of a bionanocomposite from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and cellulose nanocrystals. Cellulose 26(2):979–990

    Article  CAS  Google Scholar 

  • Zhu JY, Chen YX, Yu HY, Guan Y, Zhou Y, Yang XG, Zou ZY, Tam KC (2019) Comprehensive insight into degradation mechanism of green biopolyester nanocomposites using functionalized cellulose nanocrystals. ACS Sustain Chem Eng 7(18):15537–15547

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been financially supported by Opening Project Fund of Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, P. R. China/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops/Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, P. R. China (RRI-KLOF202001), and Natural Science Foundation of Tianjin city (18JCYBJC90100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Li, Y., Ma, X. et al. Synergistic reinforcing effect of nano-montmorillonite and cellulose nanocrystals on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Cellulose 27, 6249–6261 (2020). https://doi.org/10.1007/s10570-020-03252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03252-0

Keywords

Navigation