Skip to main content
Log in

Continuous 2G ethanol production from xylose in a fixed-bed reactor by native Saccharomyces cerevisiae strain through simultaneous isomerization and fermentation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The yeast Saccharomyces cerevisiae is the most used microorganism for ethanol production, however, on its wild form it cannot assimilate xylose. The previous ex-vivo isomerization of xylose to xylulose catalyzed by the enzyme xylose isomerase (XI) is an alternative to overcome this limitation. The present work evaluated continuous 2G ethanol production through xylose simultaneous isomerization and fermentation (SIF) using xylose isomerase co-immobilized with yeast. From the initial studies carried out with five different industrial S. cerevisiae strains, Itaiquara® baker´s yeast was selected due to its good performance in terms of ethanol yield (0.34 g/g) and productivity (2.1 g/L/h) having xylose as a carbon source. Continuous xylose SIF in a fixed-bed reactor was run for 7 days with high values of ethanol yield (0.37 g/g) and productivity (1.9 g/L/h). The operation for longer periods could be possible upon implementing strategies for pH and contamination control, showing great progress to achieve a feasible industrial 2G ethanol production process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antunes FAF, Chandel AK, Milessi TSS, Santos JC, Rosa CA, Silva SS (2014) Bioethanol production from sugarcane bagasse by a novel brazilian pentose fermenting yeast Scheffersomyces shehatae UFMG-HM 52.2: evaluation of fermentation medium. Int J Chem Eng 2014:180681. https://doi.org/10.1155/2014/180681

    Article  CAS  Google Scholar 

  • Basso LC, Amorim HV, Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163

    PubMed  CAS  Google Scholar 

  • Basso LC, Basso TO, Rocha SN (2011) Ethanol Production in Brazil: the industrial process and its impact on yeast fermentation. In: Bernardes MAS (ed) Biofuel production—recent developments and prospects. Intech Open, London. https://doi.org/10.5772/17047

    Chapter  Google Scholar 

  • Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2:9

    PubMed  PubMed Central  Google Scholar 

  • Betancur GJV, Pereira N Jr (2010) Sugarcane bagasse as feedstock for second generation ethanol production. Part I: diluted acid pretreatment optimization. Eletron J Biotechnol 13:1–9

    Google Scholar 

  • Caballero A, Ramos JL (2017) Enhancing ethanol yields through D-xylose and L-arabinose co-fermentation after construction of a novel high efficient L-arabinose fermenting Saccharomyces cerevisiae strain. Microbiol 163:442–452

    CAS  Google Scholar 

  • Canilha L, Carvalho W, Felipe MGA, Silva JBA, Giulietti M (2010) Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol 161:84–92

    PubMed  CAS  Google Scholar 

  • Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification and ethanol fermentation. J Biomed Biotechnol. https://doi.org/10.1155/2012/989572

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandel AK, Antunes FAF, Anjos V, Bell MJ, Rodrigues LN, Singh O, Rosa CA, Pagnocca FC, Silva SS (2013) Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production. Biotechnol Biofuels 6:4

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng C, Tang RQ, Xiong L, Hector RE, Bai FW, Zhao XQ (2018) Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of Saccharomyces cerevisiae. Biotechnol Biofuels 11:28

    PubMed  PubMed Central  Google Scholar 

  • Claus D (1992) A standardized gram staining procedure. World J Microbiol Biotechnol 8:451–452

    PubMed  CAS  Google Scholar 

  • Della-Bianca BE, Basso TO, Stambuk BU, Basso LC, Gombert AK (2013) What do we know about the yeasts strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97:979–991

    PubMed  CAS  Google Scholar 

  • Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Abt TD, Bonini BM, Liden G, Dumortier F, Verplartse A, Boles E, Thevelein JM (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulosic hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6:89

    PubMed  PubMed Central  CAS  Google Scholar 

  • EBC Analytica Microbiology (1977) Method 2.2.2.3 methylene blue staining. J Inst Brew 83:109–118

    Google Scholar 

  • Fogel R, Garcia RR, Oliveira RS, Palacio DNM, Madeira LS, Pereira N Jr (2005) Optimization of acid hydrolysis of sugarcane bagasse and investigations on its fermentability for the production of xylitol by Candida guilliermondii. Appl Biochem Biotechnol 121–124:741–752

    PubMed  Google Scholar 

  • Ge X, Yang L, Xu J (2017) Cell Immobilization: fundamentals, technologies and applications. In: Wittmann C, Liao JC (eds) Industrial biotechnology: products and processes. Wiley, New York

    Google Scholar 

  • Giordano RLC, Giordano RC, Cooney LA (2000) A study on intra-particle diffusion effects in enzymatic reactions: glucose-fructose isomerization. Bioprocess Biosyst Eng 23:159–166

    CAS  Google Scholar 

  • Giordano RLC, Giordano RC, Zangirolami TC, Tardioli PW, Kopp W, Silva CR, Milessi TSS, Silva FA, Rojas MJ, Cavalcanti-Montano ID, Galeano-Suarez CA, Aquino PM (2014) Sistema catalítico e processo de obtenção de bioetanol 2g a partir de xilana/oligômeros de xilose. Brazilian patent BR102014023394, filed September 19.

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    PubMed  Google Scholar 

  • Ho DHN, Powel C (2014) The effect temperature on the growth characteristics of ethanol producing yeast strains. Int J Renew Energy Environ Eng 2(1):1–6

    Google Scholar 

  • Hochster RM, Watson RW (1953) Enzymatic isomerization of D-Xylose to D-Xylulose. Arch Biochem Biophys 3105:120–129

    Google Scholar 

  • Jepson WE (2002) Globalization and Brazilian biosafety: the politics of scale over biotechnology governance. Polit Geogr 21:905–925

    Google Scholar 

  • Jo SE, Seong YJ, Lee HS, Kim SJ, Park K, Park YC (2016) Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6MUT expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6. J Biotechnol 227:72–78

    PubMed  CAS  Google Scholar 

  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368

    PubMed  CAS  Google Scholar 

  • Kohli K, Prajapati R, Sharma BK (2019) Bio-based chemicals from renewable biomass for integrated biorefineries. Energies 12:233

    CAS  Google Scholar 

  • Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397

    CAS  Google Scholar 

  • Lastick SM, Tucker MY, Beyette JR, Noll GB, Grohmann K (1989) Simultaneous fermentation and isomerization of xylose. Appl Microbiol Biotechnol 30:574–579

    CAS  Google Scholar 

  • Li H, Shen Y, Wu M, Hou J, Jiao C, Li Z, Liu X, Bao X (2016) Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production. Bioresour Bioprocess 3:51

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lindén T, Hahn-Hagerdal B (1989) Fermentation of lignocellulose hydrolysates with yeasts and xylose isomerase. Enzyme Microb Technol 11:583–589

    Google Scholar 

  • Liu T, Huang S, Gent A (2018) Recombinant diploid Saccharomyces cerevisiae straing development for rapid glucose and xylose co-fermentation. Fermentation 4:49

    Google Scholar 

  • Lopes ML, Paulillo SCL, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, Bernardino CD, Amorim Neto HB, Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47S:64–76

    Google Scholar 

  • Marinho CD, Martins FJO, Amaral Júnior AT, Gonçalves LSA, Santos OJAP, Alves DP, Brasileiro BP, Peternelli LA (2014) Genetically modified crops: Brazilian law and overview. Genet Mol Res 13:5221–5240

    PubMed  CAS  Google Scholar 

  • Martani F, Fossati T, Posteri R, Signori L, Porro D, Branduardi P (2013) Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and L-ascorbic acid-producing strains. Yeast 30:365–378

    PubMed  CAS  Google Scholar 

  • Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69:526–536

    PubMed  CAS  Google Scholar 

  • Merritt NR (1966) The influence of temperature on some properties of yeast. J Inst Brew 72:374–383

    Google Scholar 

  • Milessi TS, Aquino PM, Silva CR, Moraes GS, Zangirolami TC, Giordano RC, Giordano RLC (2018) Influence of key variables on the simultaneous isomerization and fermentation (SIF) of xylose by a native Saccharomyces cerevisiae strain co-encapsulated with xylose isomerase for 2G ethanol production. Biomass Bioenerg 119:277–283

    CAS  Google Scholar 

  • Milessi TSS, Antunes FAF, Chandel AK, Silva SS (2012) Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate. 3 Biotech. https://doi.org/10.1007/s13205-012-0098-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Milessi-Esteves TS, Corradini FAS, Kopp W, Zangirolami TC, Tardioli PW, Giordano RC, Giordano RLC (2019) An innovative biocatalyst for continuous 2G ethanol production from xylo-oligomers by Saccharomyces cerevisiae through simultaneous hydrolysis, isomerization and fermentation (SHIF). Catalysts 9:225. https://doi.org/10.3390/catal9030225

    Article  CAS  Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27

    PubMed  CAS  Google Scholar 

  • Novy V, Wang R, Westman JO, Franzén CJ, Nidetzky B (2017) Saccharomyces cerevisiae strain comparision in glucose-xylose fermentations on defined substrates and in high-gravity SSCF: convergence in strain performance despite differences in genetic and evolutionary engineering history. Biotechnol Biofuels 10:205

    PubMed  PubMed Central  Google Scholar 

  • Patiño MA, Ortiz JP, Velásquez M, Stambuk BU (2019) D-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: a review. Yeast. https://doi.org/10.1002/yea.3429

    Article  PubMed  Google Scholar 

  • Rizzi M, Harwart K, Erlemann P, Bui-Thanh NA, Dellweg H (1989) Purification and properties of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis. J Ferment Bioeng 67:20–24

    CAS  Google Scholar 

  • Senac T, Hahn-Hagerdal B (1990) Intermediary metabolite concentrations in xylulose and glucose fermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 56:120–126

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shin M, Kim J, Ye S, Kim S, Jeong D, Lee DY, Kim JN, Jin YS, Kim KH, Kim SR (2019) Comparative global metabolite profiling of xylose-fermenting S. cerevisiae SR8 and S. stipitis. Appl Microbiol Biotechnol 103:5435–5446

    PubMed  CAS  Google Scholar 

  • Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall Inc., New Jersey

    Google Scholar 

  • Silva CR (2013) Produção de etanol a partir de xilose e de hemicelulose de bagaço de cana usando glicose isomerase coimobilizada com Saccharomyces cerevisiae. Ph.D. Thesis from Federal University of São Carlos. https://repositorio.ufscar.br/handle/ufscar/3956. Accessed Jan 2020

  • Silva SS, Mussatto SI, Santos JC, Santos DT, Polizel J (2007) Cell immobilization and xylitol production using sugarcane bagasse as raw material. Appl Biochem Biotechnol 141(2–3):215–227

    PubMed  CAS  Google Scholar 

  • Silva CR, Zangirolami TC, Rodrigues JP, Matugi K, Giordano RC, Giordano RLC (2012) An innovative biocatalyst for production of ethanol from xylose in a continuous bioreactor. Enzyme Microb Technol 50:35–42

    PubMed  CAS  Google Scholar 

  • Skinner KA, Leathers TD (2004) Bacterial contaminants of the fuel ethanol production. J Ind Microb Biotechnol 31:401–408

    CAS  Google Scholar 

  • Trovati J, Giordano RC, Giordano RLC (2009) Improving the performance of a continuous process for the production of ethanol from starch. Appl Biochem Biotechnol 156:506–520

    CAS  Google Scholar 

  • Yu S, Jeppsson H, Hahn-Hägerdal B (1995) Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains. Appl Microbiol Biotechnol 44:314–320

    PubMed  CAS  Google Scholar 

  • Yuan D, Rao K, Varanasi S, Relue P (2012) A viable method and configuration for fermenting biomass sugars to ethanol using native Saccharomyces cerevisiae. Bioresour Technol 117:92–98

    PubMed  CAS  Google Scholar 

  • Zhao J, Xia L (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem Eng J 49:28–32

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the São Paulo Research Foundation (FAPESP), Grants #2008/56246-0 and 2016/10636-8, and the Brazilian National Council for Scientific and Technological Development (CNPq) for their financial support. This work was in part financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES)—Finance code 001. The authors are also grateful to DuPontTM Genencor® (USA) for the donation of xylose isomerase, Quimica Real (Brazil) for the donation of Kamoran®, CTC for the donation of sugarcane bagasse and Prof. Andreas K. Gombert (UNICAMP) for the donation of the industrial yeasts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thais S. Milessi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milessi, T.S., Silva, C.R., Moraes, G.S. et al. Continuous 2G ethanol production from xylose in a fixed-bed reactor by native Saccharomyces cerevisiae strain through simultaneous isomerization and fermentation. Cellulose 27, 4429–4442 (2020). https://doi.org/10.1007/s10570-020-03108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03108-7

Keywords

Navigation