Skip to main content
Log in

Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The main objective of this study was to produce aligned hemp fibre mats from high strength hemp fibres using dynamic sheet forming (DSF). Alkali treatment of hemp fibre was carried out at ambient and high temperature to separate fibres. Single fibre tensile testing was used to assess the tensile properties of the fibres. It was found that the highest tensile properties were exhibited by high temperature treated fibre, whereas the tensile properties exhibited by ambient temperature treated fibre were lower than for untreated fibre. It was also found that fibre granulated after high temperature treatment, was better separated than that granulated before high temperature treatment. This well-separated fibre could successfully be formed into mats using DSF. The orientation of the formed mat was analysed using ImageJ (NIH, USA) software by which the potential of DSF to produce aligned hemp fibre mat was supported. The tensile properties of composite reinforced by these aligned hemp fibre mats were assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abraham E, Deepa B, Pothan L, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86(4):1468–1475

    Article  CAS  Google Scholar 

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11(7):36–42

    Google Scholar 

  • ASTM D (1986) 3379-75. Standard Test Method for Tensile Strength and Young's Modulus for High-Modulus Single-Filament Materials, Annual Book of ASTM Standards, (May 1989) 8:128–131.

  • Beckermann G (2007) Performance of hemp-fibre reinforced polypropylene composite materials. The University of Waikato, Hamilton, New Zealand

    Google Scholar 

  • Beckermann G, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos A 39(6):979–988

    Article  CAS  Google Scholar 

  • Beg MDH (2007) The improvement of interfacial bonding, weathering and recycling of wood fibre reinforced polypropylene composites. The University of Waikato, Hamilton

    Google Scholar 

  • Biagiotti J, Puglia D, Torre L, Kenny JM, Arbelaiz A, Cantero G, Marieta C, Llano-Ponte R, Mondragon I (2004) A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym Compos 25(5):470–479

    Article  CAS  Google Scholar 

  • Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811

    Article  CAS  Google Scholar 

  • Dahiya J, Rana S (2004) Thermal degradation and morphological studies on cotton cellulose modified with various arylphosphorodichloridites. Polym Int 53(7):995–1002

    Article  CAS  Google Scholar 

  • Efendy MA, Pickering K (2014) Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Compos A 67:259–267

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • Gesellchen F, Bernassau A, Dejardin T, Cumming D, Riehle M (2014) Cell patterning with a heptagon acoustic tweezer–application in neurite guidance. Lab Chip 14(13):2266–2275

    Article  PubMed  CAS  Google Scholar 

  • Ghazali M, Efendy A (2016) Bio-composites materials from engineered natural fibres for structural applications. University of Waikato, Hamilton

    Google Scholar 

  • Herrera-Franco P, Valadez-Gonzalez A (2005) A study of the mechanical properties of short natural-fiber reinforced composites. Compos B 36(8):597–608

    Article  CAS  Google Scholar 

  • Islam MS (2008) The influence of fibre processing and treatments on hemp fibre/epoxy and hemp fibre/PLA composites. the University of Waikato, Hamilton

    Google Scholar 

  • Islam MS, Pickering KL, Foreman NJ (2011) Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. J Appl Polym Sci 119(6):3696–3707

    Article  CAS  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207

    Article  CAS  Google Scholar 

  • Kabir M, Wang H, Lau K, Cardona F (2012a) Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos B 43(7):2883–2892

    Article  CAS  Google Scholar 

  • Kabir M, Wang H, Lau K, Cardona F, Aravinthan T (2012b) Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites. Compos B 43(2):159–169

    Article  CAS  Google Scholar 

  • Kabir M, Wang H, Lau K, Cardona F (2013a) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23

    Article  CAS  Google Scholar 

  • Kabir M, Wang H, Lau K, Cardona F (2013b) Tensile properties of chemically treated hemp fibres as reinforcement for composites. Compos B 53:362–368

    Article  CAS  Google Scholar 

  • Knill CJ, Kennedy JF (2003) Degradation of cellulose under alkaline conditions. Carbohydr Polym 51(3):281–300

    Article  CAS  Google Scholar 

  • Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Gloaguen V, Krausz P (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Compos A 39(3):514–522

    Article  CAS  Google Scholar 

  • Lewis DDJ (2016) Interlaminar reinforcement of carbon fiber composites from unidirectional prepreg utilizing aligned carbon nanotubes. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Article  CAS  Google Scholar 

  • Methacanon P, Weerawatsophon U, Sumransin N, Prahsarn C, Bergado D (2010) Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydr Polym 82(4):1090–1096

    Article  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234

    Article  CAS  Google Scholar 

  • Olsson A-M, Salmén L (2004) The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr Res 339(4):813–818

    Article  PubMed  CAS  Google Scholar 

  • Ouajai S, Shanks R (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89(2):327–335

    Article  CAS  Google Scholar 

  • Oushabi A, Sair S, Hassani FO, Abboud Y, Tanane O, El Bouari A (2017) The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. S Afr J Chem Eng 23:116–123

    Google Scholar 

  • Palmieri V, Lucchetti D, Maiorana A, Papi M, Maulucci G, Calapà F, Ciasca G, Giordano R, Sgambato A, De Spirito M (2015) Mechanical and structural comparison between primary tumor and lymph node metastasis cells in colorectal cancer. Soft Matter 11(28):5719–5726

    Article  PubMed  CAS  Google Scholar 

  • Peng F, Ren J-L, Xu F, Bian J, Peng P, Sun R-C (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 57(14):6305–6317

    Article  PubMed  CAS  Google Scholar 

  • Pickering K (2008) Properties and performance of natural-fibre composites. Elsevier, Amsterdam

    Book  Google Scholar 

  • Pickering K, Efendy MA (2016) Preparation and mechanical properties of novel bio-composite made of dynamically sheet formed discontinuous harakeke and hemp fibre mat reinforced PLA composites for structural applications. Ind Crops Prod 84:139–150

    Article  CAS  Google Scholar 

  • Pickering K, Le TM (2016) High performance aligned short natural fibre–Epoxy composites. Compos B 85:123–129

    Article  CAS  Google Scholar 

  • Pickering K, Beckermann G, Alam S, Foreman N (2007) Optimising industrial hemp fibre for composites. Compos A 38(2):461–468

    Article  CAS  Google Scholar 

  • Pickering K, Efendy MA, Le T (2015) A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A 83:98–112

    Article  CAS  Google Scholar 

  • Püspöki Z, Storath M, Sage D, Unser M (2016) Transforms and operators for directional bioimage analysis: a survey. Focus on Bio-Image Informatics. Springer, Cham, pp 69–93

    Book  Google Scholar 

  • Rezakhaniha R, Agianniotis A, Schrauwen JTC, Griffa A, Sage D, Bouten Cv, Van de Vosse F, Unser M, Stergiopulos N (2012) Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 11(3–4):461–473

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Chakraborty S, Kundu SP, Basak RK, Majumder SB, Adhikari B (2012) Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresour Technol 107:222–228

    Article  PubMed  CAS  Google Scholar 

  • Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos A 42(8):888–895

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Segal L, Creely J, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Shah DU, Vollrath F, Stires J, Deheyn DD (2015) The biocomposite tube of a chaetopterid marine worm constructed with highly-controlled orientation of nanofilaments. Mater Sci Eng, C 48:408–415

    Article  CAS  Google Scholar 

  • Sun R, Tomkinson J, Jones GL (2000) Fractional characterization of ash-AQ lignin by successive extraction with organic solvents from oil palm EFB fibre. Polym Degrad Stab 68(1):111–119

    Article  CAS  Google Scholar 

  • Sunny T, Pickering KL, Lim SH (2017) Alignment of short fibres: an overview. In: Proceedings of the processing and fabrication of advanced materials, Auckland, New Zealand, 22–25 January 2017, pp 616–625

  • Sunny T, Pickering KL, Lim SH (2018) Fibre orientation distribution assessment of dynamically sheet formed hemp fibre mats by image analysis. Appl Mech Mater

  • Taha I, Steuernagel L, Ziegmann G (2007) Optimization of the alkali treatment process of date palm fibres for polymeric composites. Compos Interfaces 14(7–9):669–684

    Article  CAS  Google Scholar 

  • Zafeiropoulos N, Baillie C (2007) A study of the effect of surface treatments on the tensile strength of flax fibres: part II. Application of Weibull statistics. Compos A 38(2):629–638

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research received no specific grant from any agency in the public, commercial, or not-for-profit sectors. However, the authors would like to thank to the University of Waikato’s Composites research group for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Sunny.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunny, T., Pickering, K.L. & Lim, S.H. Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement. Cellulose 27, 2569–2582 (2020). https://doi.org/10.1007/s10570-019-02939-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02939-3

Keywords

Navigation