Skip to main content
Log in

Preparation and swelling behavior of pH/temperature responsive semi-IPN hydrogel based on carboxymethyl xylan and poly(N-isopropyl acrylamide)

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, carboxymethyl xylan was synthesized from wheat straw xylan and then pH/temperature dual-responsive hydrogels based on the carboxymethyl xylan (CMX) and poly(N-isopropylacrylamide) (PNIPAm) were firstly synthesized through semi-interpenetrating polymer network synthetic route. The temperature-responsive behavior was investigated by swelling experiment and DSC test, showing that the CMX content played an important role in the phase transition, and the CMX–PNIPAm hydrogel had higher pH sensitivity compared with PNIPAm hydrogel. The CMX content and the interconnected pore structure within the network improved the swelling, and the CMX–PNIPAm hydrogels had a high de-swelling rate. Addition of AAc in the hydrogels can improve pH sensitivity but decrease temperature sensitivity. The excellent swelling reversibility in response to temperature was verified through the oscillatory experiments of swelling and de-swelling. It is expected that the CMX–PNIPAm hydrogels could be used in biomedical fields as an intelligent material, especially for drug delivery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BIS:

N-Methylene bisacrylamide

CMX:

Carboxymethyl xylan

13C-NMR:

C-Nuclear magnetic resonance

DSC:

Differential scanning calorimetry

FT-IR:

Fourier transform infrared spectroscopy

GC:

Gas chromatography

LCST:

Lower critical solution temperature

PNIPAm:

Poly(N-isopropylacrylamide)

SEM:

Scanning electron microscopy

semi-IPN:

Semi-interpenetrating polymer network

References

  • Azarova YA, Pestov AV, Bratskaya SY (2016) Application of chitosan and its derivatives for solid-phase extraction of metal and metalloid ions: a mini-review. Cellulose 23(4):2273–2289

    Article  CAS  Google Scholar 

  • Bajpai AK, Shrivastava J (2005) In vitro enzymatic degradation kinetics of polymeric blends of crosslinked starch and carboxymethyl cellulose. Polym Int 54:1524–1536

    Article  CAS  Google Scholar 

  • Bush JR, Liang H, Dickinson M, Botchwey EA (2016) Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration. Polym Adv Technol 27:1050–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Liu MZ, Chen SL (2009) Synthesis and characterization of thermo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N,N-diethylacrylamide) semi-IPN hydrogel. Mater Chem Phys 115:339–346

    Article  CAS  Google Scholar 

  • Cheng SX, Zhang JT, Zhuo RX (2003) Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties. J Biomed Mater Res 67A:96–103

    Article  CAS  Google Scholar 

  • Dai HJ, Ou SY, Huang Y, Liu ZJ, Huang HH (2018) Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel. Cellulose 25(1):593–606

    Article  CAS  Google Scholar 

  • Dang QF, Yan JQ, Li JJ, Cheng XJ, Liu CS, Chen XG (2011) Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohydr Polym 83:171–178

    Article  CAS  Google Scholar 

  • Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590

    Article  CAS  Google Scholar 

  • Ebringerová A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties, 1—naturally occurring xylans structures, procedures and properties. Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  • Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67

    Article  CAS  Google Scholar 

  • Fang JM, Fowler P, Tomkinson J, Hill CAS (2002) Preparation and characterization of methylated hemicelluloses from wheat straw. Carbohydr Polym 47:285–293

    Article  CAS  Google Scholar 

  • Gao C, Ren J, Zhao C, Kong W, Dai Q, Chen Q, Liu C, Sun R (2016) Xylan-based temperature/pH sensitive hydrogels for drug controlle drelease. Carbohydr Polym 151:189–197

    Article  CAS  PubMed  Google Scholar 

  • Guo BL, Gao QY (2007) Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide) semi-IPN hydrogel for oral delivery of drugs. Carbohydr Res 342:2416–2422

    Article  CAS  PubMed  Google Scholar 

  • Heinze T (1998) New ionic polymers by cellulose functionalization. Macromol Chem Phys 199:2341–2364

    Article  CAS  Google Scholar 

  • Heinze T, Pfeiffer K (1999) Studies on the synthesis and characterization of carboxymethyl cellulose. Die Angew Makromol Chem 266:37–45

    Article  CAS  Google Scholar 

  • Hirokawa Y, Tanaka T (1984) Volume phase transition in a non-ionic gel. J Chem Phys 81:6379–6380

    Article  Google Scholar 

  • Huynh DP, Im GJ, Chae SY, Lee KC, Lee DS (2009) Controlled release of insulin from pH/temperature-sensitive injectable pentablock copolymer hydrogel. J Control Release 137:20–24

    Article  CAS  PubMed  Google Scholar 

  • Inomata H, Goto S, Saito S (1990) Phase transition of N-substituted acrylamide gels. Macromolecules 23:4887–4888

    Article  CAS  Google Scholar 

  • Jeong B, Lee KM, Gutowska A, An YH (2002) Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Biomacromol 3:865–868

    Article  CAS  Google Scholar 

  • Kaneko Y, Yoshida R, Sakai K, Sakurai Y, Okano T (1995) Temperature-responsive shrinking kinetics of poly(N-isopropylacrylamide) copolymer gels with hydrophilic and hydrophobic comonomers. J Membr Sci 101:13–22

    Article  CAS  Google Scholar 

  • Kim D, Park K (2004) Swelling and mechanical properties of superporous hydrogels of poly(acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks. Polymer 45:189–196

    Article  CAS  Google Scholar 

  • Lawther JM, Sun RC, Banks WB (1995) Extraction, fractionation, and characterization of structural polysaccharides from wheat straw. J Agric Food Chem 43:667–675

    Article  CAS  Google Scholar 

  • Lee WF, Chen YJ (2001) Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN hydrogels. J Appl Polym Sci 82:2487–2496

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880

    Article  CAS  PubMed  Google Scholar 

  • Li YJ, Sun XF, Ye Q, Liu BC, Wu YG (2014) Preparation and properties of a novel hemicellulose-based magnetic hydrogel. Acta Phys Chim Sin 30:111–120

    Google Scholar 

  • Liu WG, Zhang BQ, Lu WW, Li XW, Zhu DW, Yao KD, Wang Q, Zhao CR, Wang CD (2004) A rapid temperature-responsive sol–gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 25:3005–3012

    Article  CAS  PubMed  Google Scholar 

  • Liu CH, Chen YQ, Chen JG (2010) Synthesis and characteristics of pH-sensitive semi-interpenetrating polymer network hydrogels based on konjac glucomannan and poly(aspartic acid) for in vitro drug delivery. Carbohydr Polym 79:500–506

    Article  CAS  Google Scholar 

  • Ma JH, Xu YJ, Fan B, Liang BR (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43:2221–2228

    Article  CAS  Google Scholar 

  • Peng F, Guan Y, Zhang B, Bian J, Ren JL, Yao CL, Sun RC (2014) Synthesis and properties of hemicelluloses-based semi-IPN hydrogels. Int J Biol Macromol 65:564–572

    Article  CAS  PubMed  Google Scholar 

  • Petzold K, Schwikal K, Günther W, Heinze T (2006a) Carboxymethyl xylan: control of properties by synthesis. Macromol Symp 232:27–36

    Article  CAS  Google Scholar 

  • Petzold K, Schwikal K, Heinze T (2006b) Carboxymethyl xylan—synthesis and detailed structure characterization. Carbohydr Polym 64:292–298

    Article  CAS  Google Scholar 

  • Razzak MT, Darwis D, Zainuddin Sukirn (2001) Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat Phys Chem 62:107–113

    Article  CAS  Google Scholar 

  • Roy I, Gupta MN (2003) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Shibayama M, Fujikawa Y, Nomura S (1996) Dynamic light scattering study of poly(N-isopropylacrylamide-co-acrylic acid) gels. Macromolecules 29:6535–6540

    Article  CAS  Google Scholar 

  • Sun XF, Sun RC, Fowler P, Baird MS (2005) Extraction and characterization of original lignin and hemicelluloses from wheat straw. J Agri Food Chem 53:860–870

    Article  CAS  Google Scholar 

  • Sun XF, Wang HH, Jing ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 128:1357–1366

    Article  CAS  Google Scholar 

  • Sun XF, Liu BC, Jing ZX, Wang HH (2015) Preparation and adsorption property of xylan/poly(acrylic acid)magnetic nanocomposite hydrogel adsorbent. Carbohydr Polym 118:16–23

    Article  CAS  PubMed  Google Scholar 

  • Sun XF, Feng Y, Shi X, Wang YX (2016) Preparation and property of xylan/poly(methacrylic acid)semi-interpenetrating network hydrogel. Int J Polym Sci 2016:8241078. https://doi.org/10.1155/2016/8241078

    Article  CAS  Google Scholar 

  • Teli SB, Gokavi GS, Aminabhavi TM (2007) Novel sodium alginate-poly(N-isopropylacrylamide) semi-interpenetrating polymer network membranes for pervaporation separation of water–ethanol mixtures. Sep Purif Technol 56:150–157

    Article  CAS  Google Scholar 

  • Tranquilan-Aranilla C, Nagasawa N, Bayquen A, Rosa AD (2012) Synthesis and characterization of carboxymethyl derivatives of kappa-carrageenan. Carbohydr Polym 87:1810–1816

    Article  CAS  Google Scholar 

  • Yang JY, Zhou XS, Fang J (2011) Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels. Carbohydr Polym 86:1113–1117

    Article  CAS  Google Scholar 

  • Yin LC, Fei LK, Cui FY, Tang C, Yin CH (2007) Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28:1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Zhang XZ, Zhou RX (2000) Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with improved surface property. J Colloid Interface Sci 223:311–313

    Article  CAS  PubMed  Google Scholar 

  • Zhang XZ, Sun GM, Wu DQ, Chu CC (2004a) Synthesis and characterization of partially biodegradable and thermosensitive hydrogel. J Mater Sci Mater Med 15:865–875

    Article  CAS  PubMed  Google Scholar 

  • Zhang XZ, Wu DQ, Chu CC (2004b) Synthesis and characterization of partially biodegradable, temperature and pH sensitive HCE-MA/PNIPAAm hydrogels. Biomaterials 25:4719–4730

    Article  CAS  PubMed  Google Scholar 

  • Zhang JT, Huang SW, Guo FZ, Zhuo RX (2005a) Novel temperature-sensitive, β-cyclodextrin-incorporated poly(N-isopropylacrylamide) hydrogels for slow release of drug. Colloid Polym Sci 283:461–464

    Article  CAS  Google Scholar 

  • Zhang GQ, Zha LS, Zhou MH, Ma JH, Liang BR (2005b) Rapid deswelling of sodium alginate/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels in response to temperature and pH changes. Colloid Polym Sci 283:431–438

    Article  CAS  Google Scholar 

  • Zhang JT, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5:488–497

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the supports by the National Natural Science Foundation of China (No. 20707016), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JM2003), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (No. Z2019204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Feng Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, XF., Zeng, Q., Wang, H. et al. Preparation and swelling behavior of pH/temperature responsive semi-IPN hydrogel based on carboxymethyl xylan and poly(N-isopropyl acrylamide). Cellulose 26, 1909–1922 (2019). https://doi.org/10.1007/s10570-018-2180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2180-x

Keywords

Navigation