Skip to main content

Advertisement

Log in

Influence of divalent counterions on the solution rheology and supramolecular aggregation of carboxymethyl cellulose

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Divalent counterions promote attractive forces between polyelectrolyte chains via electrostatic bridging, which play an important role in the conformation of ionic biopolymers. Further, counterion valence is known to affect the flexibility and aggregation properties of polyelectrolytes in solution. The present study seeks to resolve the effect of counterion valence and type on the structure and flow properties of a model semiflexible polyelectrolyte. We report rheology and light scattering data for the Na\(^+\), Mg\(^{2+}\), Ca\(^{2+}\), Mn\(^{2+}\), Co\(^{2+}\), Ba\(^{2+}\) salts of carboxymethyl cellulose in aqueous solutions. The Na\(^+\) and Mg\(^{2+}\) counterions do not interact specifically with the carboxylate groups, and their CMC salts form clear solutions in the concentration (c) range studied (0.001 M < c < 0.3 M), which spans from the dilute to the entangled regimes. The other salts form clear solutions at low concentrations and become turbid at higher ones. The specific viscosity as a function of molar polymer concentration falls into a single curve for all divalent salts, with small differences occurring only for c > 0.2 M. Compared NaCMC, divalent salts display a lower viscosities at low concentrations (in the non-entangled regime), suggesting less expanded chains, in agreement with earlier experimental results on flexible polyelectrolytes. Above the entanglement crossover (\(c \simeq\) 0.07 M), solutions with divalent counterions display viscosities up to an order of magnitude larger than NaCMC, possibly because interchain crosslinks form by electrostatic bridging. Dynamic light scattering measurements on semidilute non-entangled solutions reveal a bimodal decay function, where the relative amplitudes of the two modes vary with counterion valence, size as well as with the filter size employed and the time after filtration. These variables (except for counterion valency) do not strongly affect the solution viscosity, indicating that polyelectrolyte clusters only contain a small fraction of the total number of chains in solution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This value is quoted on the analysis certificate of the batch. The general value for the product is DS = 1.15–1.35.

  2. The exponent of 5.6 is obtained from fitting the highest concentrations in Fig. 3b. Consideration of a wider concentration range yields a lower exponent of \(\simeq 5\)

  3. In reference (Lopez and Richtering 2018) the Carreau model was used, which corresponds to Eq. 4 with \(b = 2\). fitting the data of reference (Lopez and Richtering 2018) to Eq. 4 leaving b as a free parameter yields similar results, 2018.

  4. While the terminal modulus G is not considered in Lopez et al. (2016), the molar mass dependence of the specific viscosity in non-entangled solutions agrees with that of NaPSS., (Lopez and Richtering 2018).

References

  • Agarwal RK, Faravelli I, Gregory DP, Groves BJ, Roberts GP (2004) Toothpaste, January 12 2004. US Patent App. 11/883,677

  • American Society for Testing and Materials (ASTM) (2003) Standard Test Methods for Sodium Carboxymethylcellulose, ASTM D 1439-2003. https://www.astm.org/Standards/D1439.htm

  • Bajul A, Gerbaud V, Teychene S, Devatine A, Bajul G (2017) Effect of carboxymethylcellulose on potassium bitartrate crystallization on model solution and white wine. J Cryst Growth 472:54–63

    Article  CAS  Google Scholar 

  • Barba C, Montané D, Farriol X, Desbrières J, Rinaudo M (2002) Synthesis and characterization of carboxymethylcelluloses from non-wood pulps II. Rheological behavior of CMC in aqueous solution. Cellulose 9(3–4):327–335

    Article  CAS  Google Scholar 

  • Bordi F, Cametti C, Colby RH (2004) Dielectric spectroscopy and conductivity of polyelectrolyte solutions. J Phys Condens Matter 16(49):R1423

    Article  CAS  Google Scholar 

  • Boris DC, Colby RH (1998) Rheology of sulfonated polystyrene solutions. Macromolecules 31(17):5746–5755

    Article  CAS  Google Scholar 

  • Brettmann B, Pincus P, Tirrell M (2017) Lateral structure formation in polyelectrolyte brushes induced by multivalent ions. Macromolecules 50(3):1225–1235

    Article  CAS  Google Scholar 

  • Burchard W (2001) Structure formation by polysaccharides in concentrated solution. Biomacromolecules 2(2):342–353

    Article  CAS  PubMed  Google Scholar 

  • Burchard W (2003) Solubility and solution structure of cellulose derivatives. Cellulose 10(3):213–225 ISSN:0969-0239

    Article  CAS  Google Scholar 

  • Burchard W, Richtering W (1989) Dynamic light scattering from polymer solutions. In: Pietralla M, Pechhold W (eds) Relaxation in Polymers. Progress in Colloid & Polymer Science, vol 80. Steinkopff, pp 151–163

  • Chen X, Zhang Y, Wang H, Wang S-W, Liang S, Colby RH (2011) Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chloride. J Rheol 55(3):485–494

    Article  CAS  Google Scholar 

  • Chen X, Liang S, Wang S-W, Colby RH (2018) Linear viscoelastic response and steady shear viscosity of native cellulose in 1-ethyl-3-methylimidazolium methylphosphonate. J Rheol 62(1):81–87

    Article  CAS  Google Scholar 

  • Cheng W, Liu C, Tong T, Epsztein R, Sun M, Verduzco R, Ma J, Elimelech M (2018) Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength. J Membr Sci 559:98–106

    Article  CAS  Google Scholar 

  • Chremos A, Douglas JF (2016) Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution. J Chem Phys 144(16):164904

    Article  CAS  PubMed  Google Scholar 

  • Chremos A, Douglas JF (2017) Communication: counter-ion solvation and anomalous low-angle scattering in salt-free polyelectrolyte solutions. J Chem Phys 147(24):241103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chremos A, Douglas JF (2018a) Competitive solvation effects in polyelectrolyte solutions. In: Gels and Other Soft Amorphous Solids, Chapter 2. ACS Symposium Series, Vol 1296. pp 15–32

  • Chremos A, Douglas JF (2018b) Polyelectrolyte association and solvation. J Chem Phys 149(16):163305

    Article  CAS  PubMed  Google Scholar 

  • Clasen C, Kulicke W-M (2001) Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Prog Polym Sci 26(9):1839–1919

    Article  CAS  Google Scholar 

  • Colby RH (2010) Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol Acta 49(5):425–442

    Article  CAS  Google Scholar 

  • Combet J, Isel F, Rawiso M, Boué F (2005) Scattering functions of flexible polyelectrolytes in the presence of mixed valence counterions: condensation and scaling. Macromolecules 38(17):7456–7469

    Article  CAS  Google Scholar 

  • Combet J, Rawiso M, Rochas C, Hoffmann S, Boué F (2011) Structure of polyelectrolytes with mixed monovalent and divalent counterions: SAXS measurements and Poisson–Boltzmann analysis. Macromolecules 44(8):3039–3052

    Article  CAS  Google Scholar 

  • deButts EH, Hudy JA, Elliott JH (1957) Rheology of sodium carboxymethylcellulose solutions. Ind Eng Chem 49(1):94–98

    Article  CAS  Google Scholar 

  • De Gennes PG, Pincus P, Velasco RM, Brochard F (1976) Remarks on polyelectrolyte conformation. J Phys Fr 37(12):1461–1473

    Article  Google Scholar 

  • Di Cola E, Waigh TA, Colby RH (2007) Dynamic light scattering and rheology studies of aqueous solutions of amphiphilic sodium maleate containing copolymers. J Polym Sci Part B Polym Phys 45(7):774–785

    Article  CAS  Google Scholar 

  • Dieckman S, Jarrell J, Voris R (1953) Carboxymethylcellulose in the free acid form. Ind Eng Chem 45(10):2287–2290

    Article  CAS  Google Scholar 

  • Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 30(11):1049–1118

    Article  CAS  Google Scholar 

  • Dobrynin AV, Colby RH, Rubinstein M (1995) Scaling theory of polyelectrolyte solutions. Macromolecules 28(6):1859–1871

    Article  CAS  Google Scholar 

  • Donnelly MW, Hailemichael M, Liberatore MW (2015) Altering the viscosity of cationically modified cellulose polymers by the addition of salt. J Appl Polym Sci. https://doi.org/10.1002/app.41616

    Article  Google Scholar 

  • Dou S, Colby RH (2008) Solution rheology of a strongly charged polyelectrolyte in good solvent. Macromolecules 41(17):6505–6510

    Article  CAS  Google Scholar 

  • Drifford M, Dalbiez J-P (1985) Effect of salt on sodium polystyrene sulfonate measured by light scattering. Biopolym Orig Res Biomol 24(8):1501–1514

    CAS  Google Scholar 

  • Drifford M, Dalbiez J-P, Delsanti M, Belloni L (1996) Structure and dynamics of polyelectrolyte solutions with multivalent salts. Berichte der Bunsengesellschaft für physikalische Chemie 100(6):829–835

    Article  CAS  Google Scholar 

  • Dubois E, Boué F (2001) Conformation of poly (styrenesulfonate) polyions in the presence of multivalent ions: small-angle neutron scattering experiments. Macromolecules 34(11):3684–3697

    Article  CAS  Google Scholar 

  • Dumitriu S (2004) Polysaccharides: structural diversity and functional versatility. CRC Press, Boca Raton

    Book  Google Scholar 

  • Eich A, Wolf BA (2011) Intrinsic viscosities of polyelectrolytes: determination and modeling of the effects of extra salt. ChemPhysChem 12(15):2786–2790

    Article  CAS  PubMed  Google Scholar 

  • Elliot JH, Ganz AJ (1974) Some rheological properties of sodium carboxymethylcellulose solutions and gels. Rheologica Acta 13(4–5):670–674

    Article  Google Scholar 

  • Ermi BD, Amis EJ (1997) Influence of backbone solvation on small angle neutron scattering from polyelectrolyte solutions. Macromolecules 30(22):6937–6942

    Article  CAS  Google Scholar 

  • Ermi BD, Amis EJ (1998) Domain structures in low ionic strength polyelectrolyte solutions. Macromolecules 31(21):7378–7384

    Article  CAS  Google Scholar 

  • Ezhova A, Huber K (2014) Specific interactions of Ag\(^+\) ions with anionic polyacrylate chains in dilute solution. Macromolecules 47(22):8002–8011

    Article  CAS  Google Scholar 

  • Ezhova A, Huber K (2016) Contraction and coagulation of spherical polyelectrolyte brushes in the presence of Ag\(^+\), Mg\(^{2+}\), and Ca\(^{2+}\) cations. Macromolecules 49(19):7460–7468

    Article  CAS  Google Scholar 

  • Feddersen RL, Thorp SN (1993) Sodium carboxymethylcellulose. In: Whistler RY, Bemiller JN (eds) Industrial gums, 3rd edn. Elsevier, pp 537–578

  • Francis PS (1961) Solution properties of water-soluble polymers. I. Control of aggregation of sodium carboxymethylcellulose (CMC) by choice of solvent and/or electrolyte. J Appl Polym Sci 5(15):261–270

    Article  CAS  Google Scholar 

  • Gao Z, Fang Y, Cao Y, Liao H, Nishinari K, Phillips GO (2017) Hydrocolloid-food component interactions. Food Hydrocoll 68:149–156

    Article  CAS  Google Scholar 

  • Garlick T, Miner P (1993) Low stringing toothpaste, US Patent 5,192,529

  • Geissler E, Hecht A-M, Horkay F (2010) Scaling behavior of hyaluronic acid in solution with mono- and divalent ions. In: Macromolecular symposia, pp 291–292(1). ISSN:1521-3900

  • Gibis M, Schuh V, Allard K, Weiss J (2017) Influence of molecular weight and degree of substitution of various carboxymethyl celluloses on unheated and heated emulsion-type sausage models. Carbohydr Polym 159:76–85

    Article  CAS  PubMed  Google Scholar 

  • Goerigk G, Huber K, Schweins R (2007) Probing the extent of the Sr\(^{2+}\) ion condensation to anionic polyacrylate coils: a quantitative anomalous small-angle X-ray scattering study. J Chem Phys 127(15):154908

    Article  CAS  PubMed  Google Scholar 

  • Guillot S, Delsanti M, Desert S, Langevin D (2003) Surfactant-induced collapse of polymer chains and monodisperse growth of aggregates near the precipitation boundary in carboxymethylcellulose-DTAB aqueous solutions. Langmuir 19(2):230–237

    Article  CAS  Google Scholar 

  • Guise R, Filipe-Ribeiro L, Nascimento D, Bessa O, Nunes F, Cosme F (2014) Comparison between different types of carboxylmethylcellulose and other oenological additives used for white wine tartaric stabilization. Food Chem 156:250–257

    Article  CAS  PubMed  Google Scholar 

  • Hakert H, Eckert T, Müller T (1989) Rheological and electron microscopic characterization of aqueous carboxymethyl cellulose gels part I: rheological aging of aqueous gels of carboxymethyl cellulose in the free acid form (HCMC). Colloid Polym Sci 267(3):226–229

    Article  CAS  Google Scholar 

  • Hansch M, Hämisch B, Schweins R, Prévost S, Huber K (2018) Liquid–liquid phase separation in dilute solutions of poly (styrene sulfonate) with multivalent cations: phase diagrams, chain morphology, and impact of temperature. J Chem Phys 148(1):014901

    Article  CAS  PubMed  Google Scholar 

  • Hao Q-H, Chen Q, Zheng Z, Liu L-Y, Liu T-J, Niu X-H, Song Q-G, Tan H-G (2016) Molecular dynamics simulations of cylindrical polyelectrolyte brushes in monovalent and multivalent salt solutions. J Theor Comput Chem 15(03):1650026

    Article  CAS  Google Scholar 

  • Haug A, Smidsrød O (1970) Selectivity of some anionic polymers for divalent metal ions. Acta Chem Scand 24(3):843–854

    Article  CAS  Google Scholar 

  • Heinze T, Heinze U, Klemm D (1994) Viscosity behaviour of multivalent metal ion-containing carboxymethyl cellulose solutions. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics 220(1):123–132

    Article  CAS  Google Scholar 

  • Hmonnot CY, Mauermann M, Herrmann H, Kester S (2015) Assembly of simple epithelial keratin filaments: deciphering the ion dependence in filament organization. Biomacromolecules 16(10):3313–3321

    Article  CAS  Google Scholar 

  • Horkay F, Basser PJ (2004) Osmotic observations on chemically cross-linked DNA gels in physiological salt solutions. Biomacromolecules 5(1):232–237

    Article  CAS  PubMed  Google Scholar 

  • Horkay F, Basser PJ, Hecht A-M, Geissler E (2012) Chondroitin sulfate in solution: effects of mono- and divalent salts. Macromolecules 45(6):2882–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horkay F, Basser PJ, Hecht A-M, Geissler E (2018) Ionic effects in semi-dilute biopolymer solutions: a small angle scattering study. J Chem Phys 149(16):163312

    Article  CAS  PubMed  Google Scholar 

  • Huynh UT, Lerbret A, Neiers F, Chambin O, Assifaoui A (2016) Binding of divalent cations to polygalacturonate: a mechanism driven by the hydration water. J Phys Chem B 120(5):1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Inagaki H, Hotta S, Hirami M (1957) Further study on the second virial coefficient in polyelectrolyte solutions with extraneous salts. Macromol Chem Phys 23(1):1–15

    Article  CAS  Google Scholar 

  • Ishii D, Tatsumi D, Matsumoto T (2013) Effect of aluminum sulfate on dispersion state of sodium carboxymethylcellulose in aqueous solution. J Soc Rheol Jpn 40(5):267–272

    Article  Google Scholar 

  • Koovan P, Richter T, Holm C (2015) Modeling of polyelectrolyte gels in equilibrium with salt solutions. Macromolecules 48(20):7698–7708

    Article  CAS  Google Scholar 

  • Kulicke W-M, Kull AH, Kull W, Thielking H, Engelhardt J, Pannek J-B (1996) Characterization of aqueous carboxymethylcellulose solutions in terms of their molecular structure and its influence on rheological behaviour. Polymer 37(13):2723–2731

    Article  CAS  Google Scholar 

  • Lages S, Schweins R, Huber K (2007) Temperature-induced collapse of alkaline earth cation- polyacrylate anion complexes. J Phys Chem B 111(35):10431–10437

    Article  CAS  PubMed  Google Scholar 

  • Lages S, Michels R, Huber K (2010) Coil-collapse and coil-aggregation due to the interaction of Cu\(^{2+}\) and Ca\(^{2+}\) ions with anionic polyacylate chains in dilute solution. Macromolecules 43(6):3027–3035

    Article  CAS  Google Scholar 

  • Liu C, He J, Van Ruymbeke E, Keunings R, Bailly C (2006) Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight. Polymer 47(13):4461–4479

    Article  CAS  Google Scholar 

  • Lopez CG, Richtering W (2018) Conformation and dynamics of flexible polyelectrolytes in semidilute salt-free solutions. J Chem Phys 148:244902

    Article  CAS  PubMed  Google Scholar 

  • Lopez CG, Rogers SE, Colby RH, Graham P, Cabral JT (2015) Structure of sodium carboxymethyl cellulose aqueous solutions: a SANS and rheology study. J Polym Sci Part B Polym Phys 53(7):492–501

    Article  CAS  Google Scholar 

  • Lopez CG, Colby RH, Graham P, Cabral JT (2016) Viscosity and scaling of semiflexible polyelectrolyte NaCMC in aqueous salt solutions. Macromolecules 50(1):332–338

    Article  CAS  Google Scholar 

  • Lopez CG, Colby RH, Cabral JT (2018a) Electrostatic and hydrophobic interactions in NaCMC aqueous solutions: effect of degree of substitution. Macromolecules 51(8):3165–3175

    Article  CAS  Google Scholar 

  • Lopez CG, Manova A, Hoppe C, Dreja M, Schmiedel P, Job M, Richtering W, Böker A, Tsarkova LA (2018b) Combined UV–Vis-absorbance and reflectance spectroscopy study of dye transfer kinetics in aqueous mixtures of surfactants. Colloids Surf A Physicochem Eng Asp 550:74–81

    Article  CAS  Google Scholar 

  • Lu F, Song J, Cheng B-W, Ji X-J, Wang L-J (2013) Viscoelasticity and rheology in the regimes from dilute to concentrated in cellulose 1-ethyl-3-methylimidazolium acetate solutions. Cellulose 20(3):1343–1352

    Article  CAS  Google Scholar 

  • Lv Y, Wu J, Zhang J, Niu Y, Liu C-Y, He J, Zhang J (2012) Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer 53(12):2524–2531

    Article  CAS  Google Scholar 

  • Malmsten M (2006) Soft drug delivery systems. Soft Matter 2(9):760–769

    Article  CAS  Google Scholar 

  • Matsumoto T, Zenkoh H (1991) Molecular mobility, structure and a new model of the carboxymethylchitin-alkaline-earth metal complex in aqueous systems. J Chem Soc Faraday Trans 87(24):3841–3846

    Article  CAS  Google Scholar 

  • Michel RC, Reed WF (2000) New evidence of the nonequilibrium nature of the ‘slow modes’ of diffusion in polyelectrolyte solutions. Biopolym Orig Res Biomol 53(1):19–39

    CAS  Google Scholar 

  • Muthukumar M (2016) Ordinary-extraordinary transition in dynamics of solutions of charged macromolecules. Proc Natl Acad Sci 113(45):12627–12632

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar M (2017) 50th anniversary perspective: a perspective on polyelectrolyte solutions. Macromolecules 50(24):9528–9560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakauma M, Funami T, Fang Y, Nishinari K, Draget KI, Phillips GO (2017) Calcium binding and calcium-induced gelation of normal low-methoxyl pectin modified by low molecular-weight polyuronate fraction. Food Hydrocoll 69:318–328

    Article  CAS  Google Scholar 

  • Nicolae A, Radu G-L, Belc N (2016) Effect of sodium carboxymethyl cellulose on gluten-free dough rheology. J Food Eng 168:16–19

    Article  CAS  Google Scholar 

  • Pavlov GM, Dommes OA, Okatova OV, Gavrilova II, Panarin EF (2018) Spectrum of hydrodynamic volumes and sizes of macromolecules of linear polyelectrolytes versus their charge density in salt-free aqueous solutions. Phys Chem Chem Phys 20(15):9975–9983

    Article  CAS  PubMed  Google Scholar 

  • Porsch B, Wittgren B (2005) Analysis of calcium salt of carboxymethyl cellulose: size distributions of parent carboxymethyl cellulose by size-exclusion chromatography with dual light-scattering and refractometric detection. Carbohydr Polym 59(1):27–35

    Article  CAS  Google Scholar 

  • Prabhu V, Muthukumar M, Wignall G, Melnichenko Y (2001) Dimensions of polyelectrolyte chains and concentration fluctuations in semidilute solutions of sodium-poly (styrene sulfonate) as measured by small-angle neutron scattering. Polymer 42(21):8935–8946

    Article  CAS  Google Scholar 

  • Prabhu V, Muthukumar M, Wignall GD, Melnichenko YB (2003) Polyelectrolyte chain dimensions and concentration fluctuations near phase boundaries. J Chem Phys 119(7):4085–4098

    Article  CAS  Google Scholar 

  • Qiao C, Chen G, Li Y, Li T (2013) Viscosity properties of gelatin in solutions of monovalent and divalent salts. Korea Aust Rheol J 25(4):227–231

    Article  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford

    Google Scholar 

  • Rud O, Borisov O, Košovan P (2018) Thermodynamic model for a reversible desalination cycle using weak polyelectrolyte hydrogels. Desalination 442:32–43

    Article  CAS  Google Scholar 

  • Sardar N, Kamil M, ud Dinb K (2012) Solution behavior of anionic polymer sodium carboxymethylcellulose (NaCMC) in presence of cationic gemini/conventional surfactants. Colloids Surf A Physicochem Eng Asp 415:413–420

    Article  CAS  Google Scholar 

  • Schulz L, Burchard W, Donges R (1998) Evidence of supramolecular structures of cellulose derivatives in solution. chapter 16. ACS Symposium Series, Vol 688. pp 218–238

  • Schulz L, Seger B, Burchard W (2000) Structures of cellulose in solution. Macromol Chem Phys 201(15):2008–2022

    Article  CAS  Google Scholar 

  • Schweins R, Lindner P, Huber K (2003) Calcium induced shrinking of NaPA chains: a SANS investigation of single chain behavior. Macromolecules 36(25):9564–9573

    Article  CAS  Google Scholar 

  • Schweins R, Goerigk G, Huber K (2006) Shrinking of anionic polyacrylate coils induced by Ca\(^{2+}\), Sr\(^{2+}\) and Ba\(^{2+}\): a combined light scattering and ASAXS study. Eur Phys J E 21(2):99–110

    Article  CAS  PubMed  Google Scholar 

  • Sedlak M (1996) The ionic strength dependence of the structure and dynamics of polyelectrolyte solutions as seen by light scattering: the slow mode dilemma. J Chem Phys 105(22):10123–10133

    Article  CAS  Google Scholar 

  • Sedlák M (1999) What can be seen by static and dynamic light scattering in polyelectrolyte solutions and mixtures? Langmuir 15(12):4045–4051

    Article  Google Scholar 

  • Sedlák M (2002a) Long-time stability of multimacroion domains in polyelectrolyte solutions. J Chem Phys 116(12):5246–5255

    Article  CAS  Google Scholar 

  • Sedlák M (2002b) Mechanical properties and stability of multimacroion domains in polyelectrolyte solutions. J Chem Phys 116(12):5236–5245

    Article  CAS  Google Scholar 

  • Sedlák M, Amis EJ (1992a) Concentration and molecular weight regime diagram of salt-free polyelectrolyte solutions as studied by light scattering. J Chem Phys 96(1):826–834

    Article  Google Scholar 

  • Sedlák M, Amis EJ (1992b) Concentration and molecular weight regime diagram of salt-free polyelectrolyte solutions as studied by light scattering. J Chem Phys 96(1):817–825

    Article  Google Scholar 

  • Sinn CG, Dimova R, Antonietti M (2004) Isothermal titration calorimetry of the polyelectrolyte/water interaction and binding of Ca\(^{2+}\): effects determining the quality of polymeric scale inhibitors. Macromolecules 37(9):3444–3450

    Article  CAS  Google Scholar 

  • Smulders E, Sung E (2000) Laundry detergents, 2. Ingredients and products. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • Spiteri M, Boué F, Lapp A, Cotton J (1996) Persistence length for a PSSNa polyion in semidilute solution as a function of the ionic strength. Phys Rev Lett 77(26):5218

    Article  CAS  PubMed  Google Scholar 

  • Stewart B, Kogej K, Ramos ML, Valente AJ, Burrows HD (2017) Binding of divalent and higher valent metal ions to surfactants and polyelectrolytes. Curr Opin Colloid Interface Sci 32:76–83

    Article  CAS  Google Scholar 

  • Storz H, Zimmermann U, Zimmermann H, Kulicke W-M (2010) Viscoelastic properties of ultra-high viscosity alginates. Rheol acta 49(2):155–167

    Article  CAS  Google Scholar 

  • Trabelsi S, Raspaud E, Langevin D (2007) Aggregate formation in aqueous solutions of carboxymethylcellulose and cationic surfactants. Langmuir 23:10053–10062

    Article  CAS  PubMed  Google Scholar 

  • Tsarkova LA, Thiele MJ, Davari MD, Hofmann I, König M, Lopez CG, Vojcic L, Richtering W, Schwaneberg U (2018) Enzyme-compatible dynamic nanoreactors from electrostatically bridged like-charged surfactants and polyelectrolytes. Angewandte Chemie International Edition 57(30):9402–9407

    Article  CAS  PubMed  Google Scholar 

  • Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630

    Article  PubMed  Google Scholar 

  • Urbanski A, Hansch M, Lopez CG, Schweins R, Hertle Y, Hellweg T, Polzer F, Huber K (2018) Polyacrylates in the presence of an extraordinary monovalent cation?Solution behavior and metal nanoparticle formation. J Chem Phys 149(16):163318

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Gao L, Cheng B, Ji X, Song J, Lu F (2014) Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide. Carbohydr Polym 110:292–297

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Shangguan Y, Du M, Zhou J, Song Y, Zheng Q (2009) Steady and dynamic rheological behaviors of sodium carboxymethyl cellulose entangled semi-dilute solution with opposite charged surfactant dodecyl-trimethylammonium bromide. J Colloid Interface Sci 339(1):236–242

    Article  CAS  PubMed  Google Scholar 

  • Wyatt NB, Liberatore MW (2010) The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solutions. Soft Matter 6(14):3346–3352

    Article  CAS  Google Scholar 

  • Wyatt NB, Gunther CM, Liberatore MW (2011) Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt. Polymer 52(11):2437–2444

    Article  CAS  Google Scholar 

  • Xin C, Nie L, Chen H, Li J, Li B (2018) Effect of degree of substitution of carboxymethyl cellulose sodium on the state of water, rheological and baking performance of frozen bread dough. Food Hydrocoll 80:8–14

    Article  CAS  Google Scholar 

  • Xiong X, Wolf BA (2014) Intrinsic viscosities of polyelectrolytes: specific salt effects and viscometric master curves. Soft Matter 10(13):2124–2131

    Article  CAS  PubMed  Google Scholar 

  • Yang XH, Zhu WL (2007) Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose 14(5):409–417

    Article  CAS  Google Scholar 

  • Yin D-W, Horkay F, Douglas JF, de Pablo JJ (2008) Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions. J Chem Phys 129(15):154902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying Q, Chu B (1987) Overlap concentration of macromolecules in solution. Macromolecules 20(2):362–366

    Article  CAS  Google Scholar 

  • Yu J, Jackson N, Xu X, Morgenstern Y, Kaufman Y, Ruths M, de Pablo J, Tirrell M (2018) Multivalent counterions diminish the lubricity of polyelectrolyte brushes. Science 360(6396):1434–1438

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Douglas JF, Ermi BD, Amis EJ (2001) Influence of counterion valency on the scattering properties of highly charged polyelectrolyte solutions. J Chem Phys 114(7):3299–3313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos G. Lopez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 245 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, C.G., Richtering, W. Influence of divalent counterions on the solution rheology and supramolecular aggregation of carboxymethyl cellulose. Cellulose 26, 1517–1534 (2019). https://doi.org/10.1007/s10570-018-2158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2158-8

Keywords

Navigation